scholarly journals Architectural heritage 3D and semantic information visualization based on open standards

2013 ◽  
Vol 4 (9) ◽  
pp. 70
Author(s):  
Iñaki Prieto ◽  
José Luis Izkara ◽  
Aitziber Egusquiza

<p>Georeferenced 3D models represent an increasingly accepted solution for storing and displaying information at urban scale. CityGML, as standard data model for the representation, storage and exchange of 3D city models, represent a very attractive solution which combines 3D geometric and semantic information in a single data model. In this paper we present an approach to visualize semantic and 3D information of historical centers using open standards. Also, three client applications are presented targeting different agents with different needs with the characteristic that all the information is got from an unique extended CityGML data model.</p>

Author(s):  
G. S. Floros ◽  
C. Ellul ◽  
E. Dimopoulou

<p><strong>Abstract.</strong> Applications of 3D City Models range from assessing the potential output of solar panels across a city to determining the best location for 5G mobile phone masts. While in the past these models were not readily available, the rapid increase of available data from sources such as Open Data (e.g. OpenStreetMap), National Mapping and Cadastral Agencies and increasingly Building Information Models facilitates the implementation of increasingly detailed 3D Models. However, these sources also generate integration challenges relating to heterogeneity, storage and efficient management and visualization. CityGML and IFC (Industry Foundation Classes) are two standards that serve different application domains (GIS and BIM) and are commonly used to store and share 3D information. The ability to convert data from IFC to CityGML in a consistent manner could generate 3D City Models able to represent an entire city, but that also include detailed geometric and semantic information regarding its elements. However, CityGML and IFC present major differences in their schemas, rendering interoperability a challenging task, particularly when details of a building’s internal structure are considered (Level of Detail 4 in CityGML). The aim of this paper is to investigate interoperability options between the aforementioned standards, by converting IFC models to CityGML LoD 4 Models. The CityGML Models are then semantically enriched and the proposed methodology is assessed in terms of model’s geometric validity and capability to preserve semantics.</p>


2019 ◽  
Vol 8 (8) ◽  
pp. 347 ◽  
Author(s):  
Stelios Vitalis ◽  
Ken Ohori ◽  
Jantien Stoter

3D city models are being extensively used in applications such as evacuation scenarios and energy consumption estimation. The main standard for 3D city models is the CityGML data model which can be encoded through the CityJSON data format. CityGML and CityJSON use polygonal modelling in order to represent geometries. True topological data structures have proven to be more computationally efficient for geometric analysis compared to polygonal modelling. In a previous study, we have introduced a method to topologically reconstruct CityGML models while maintaining the semantic information of the dataset, based solely on the combinatorial map (C-Map) data structure. As a result of the limitations of C-Map’s semantic representation mechanism, the resulting datasets could suffer either from semantic information loss or the redundant repetition of them. In this article, we propose a solution for a more efficient representation of geometry, topology and semantics by incorporating the C-Map data structure into the CityGML data model and implementing a CityJSON extension to encode the C-Map data. In addition, we provide an algorithm for the topological reconstruction of CityJSON datasets to append them according to this extension. Finally, we apply our methodology to three open datasets in order to validate our approach when applied to real-world data. Our results show that the proposed CityJSON extension can represent all geometric information of a city model in a lossless way, providing additional topological information for the objects of the model.


Author(s):  
A. Uyar ◽  
N. N. Ulugtekin

In recent years, 3D models have been created of many cities around the world. Most of the 3D city models have been introduced as completely graphic or geometric models, and the semantic and topographic aspects of the models have been neglected. In order to use 3D city models beyond the task, a generalization is necessary. CityGML is an open data model and XML-based format for the storage and exchange of virtual 3D city models. Level of Details (LoD) which is an important concept for 3D modelling, can be defined as outlined degree or prior representation of real-world objects. The paper aim is first describes some requirements of 3D model generalization, then presents problems and approaches that have been developed in recent years. In conclude the paper will be a summary and outlook on problems and future work.


Author(s):  
Stelios Vitalis ◽  
Ken Arroyo Ohori ◽  
Jantien Stoter

3D city models are being extensively used in applications such as evacuation scenarios and energy consumption estimation. The main standard for 3D city models is the CityGML data model which can be encoded through the CityJSON data format. CityGML and CityJSON use polygonal modelling in order to represent geometries. True topological data structures have proven to be more computationally efficient for geometric analysis compared to polygonal modelling. In a previous study, we have introduced a method to topologically reconstruct CityGML models while maintaining the semantic information of the dataset, based solely on the combinatorial map (C-Map) data structure. As a result of the limitations of C-Map's semantic representation mechanism, the resulting datasets could suffer either from semantic information loss or the redundant repetition of them. In this article, we propose a solution for a more efficient representation of both geometry, topology and semantics by incorporating the C-Map data structure in the CityGML data model and implementing a CityJSON extension to encode the C-Map data. In addition, we provide an algorithm for the topological reconstruction of CityJSON datasets to append them according to this extension. Finally, we apply our methodology to three open datasets in order to validate our approach when applied to real-world data. Our results show that the proposed CityJSON extension can represent all geometric information of a city model in a lossless way, providing additional topological information for the objects of the model.


Author(s):  
E. Colucci ◽  
F. Noardo ◽  
F. Matrone ◽  
A. Spanò ◽  
A. Lingua

<p><strong>Abstract.</strong> The need to share information about architectural heritage effectively after a disaster event, in order to foster its preservation, requires the use of a common language between the involved actors and stakeholders. A database able to connect the architectural heritage representation with the data useful for hazard and risk analysis can thus be a powerful instrument. This paper outlines a methodology to represent 3D models of the architectural heritage, according to some existing standards data models, and relate their geometric features to the damage mechanisms that could occur after an earthquake. Among all the existing standard to represent cartographic, cultural heritage and hazard/risk information, respectively INSPIRE, CityGML, UNESCO, CIDOC-CRM, its extension MONDIS and the Getty Institute vocabularies, compliant to the CIDOC-CRM, have been taken into account. An INSPIRE extension has been proposed for increasing the level of detail (LoD) of the representation and improving the description of heritage buildings, adding some macro-elements and elements “feature types” connected with the damage mechanisms, identified in structural studies. The suggested method allows to archive, in a multi-scale database, 3D information with a very high level of detail about architectural heritage and can help structural engineers and conservator-restorers in preventing further damages through individuating useful targeted actions.</p>


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1200
Author(s):  
Franziska Schollemann ◽  
Carina Barbosa Pereira ◽  
Stefanie Rosenhain ◽  
Andreas Follmann ◽  
Felix Gremse ◽  
...  

Even though animal trials are a controversial topic, they provide knowledge about diseases and the course of infections in a medical context. To refine the detection of abnormalities that can cause pain and stress to the animal as early as possible, new processes must be developed. Due to its noninvasive nature, thermal imaging is increasingly used for severity assessment in animal-based research. Within a multimodal approach, thermal images combined with anatomical information could be used to simulate the inner temperature profile, thereby allowing the detection of deep-seated infections. This paper presents the generation of anatomical thermal 3D models, forming the underlying multimodal model in this simulation. These models combine anatomical 3D information based on computed tomography (CT) data with a registered thermal shell measured with infrared thermography. The process of generating these models consists of data acquisition (both thermal images and CT), camera calibration, image processing methods, and structure from motion (SfM), among others. Anatomical thermal 3D models were successfully generated using three anesthetized mice. Due to the image processing improvement, the process was also realized for areas with few features, which increases the transferability of the process. The result of this multimodal registration in 3D space can be viewed and analyzed within a visualization tool. Individual CT slices can be analyzed axially, sagittally, and coronally with the corresponding superficial skin temperature distribution. This is an important and successfully implemented milestone on the way to simulating the internal temperature profile. Using this temperature profile, deep-seated infections and inflammation can be detected in order to reduce animal suffering.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2021 ◽  
Author(s):  
Sarah Bauermeister ◽  
Joshua R Bauermeister ◽  
R Bridgman ◽  
C Felici ◽  
M Newbury ◽  
...  

Abstract Research-ready data (that curated to a defined standard) increases scientific opportunity and rigour by integrating the data environment. The development of research platforms has highlighted the value of research-ready data, particularly for multi-cohort analyses. Following user consultation, a standard data model (C-Surv), optimised for data discovery, was developed using data from 12 Dementias Platform UK (DPUK) population and clinical cohort studies. The model uses a four-tier nested structure based on 18 data themes selected according to user behaviour or technology. Standard variable naming conventions are applied to uniquely identify variables within the context of longitudinal studies. The data model was used to develop a harmonised dataset for 11 cohorts. This dataset populated the Cohort Explorer data discovery tool for assessing the feasibility of an analysis prior to making a data access request. It was concluded that developing and applying a standard data model (C-Surv) for research cohort data is feasible and useful.


Sign in / Sign up

Export Citation Format

Share Document