Large-scale lake simulation techniques applied to water resource management system

2018 ◽  
Vol 121 ◽  
pp. 134-138
Author(s):  
Junjian Tang
2018 ◽  
Vol 246 ◽  
pp. 02014
Author(s):  
Shuiping Yao

This paper introduces the main practice and experience of implementing the strictest water resource management system in Zhejiang province, and provides reference for other regions to implement the strictest water resource management system.


2014 ◽  
Vol 11 (7) ◽  
pp. 8239-8298 ◽  
Author(s):  
A. Nazemi ◽  
H. S. Wheater

Abstract. Human activities have caused various changes in the Earth System, and hence, the interconnections between humans and the Earth System should be recognized and reflected in models that simulate the Earth System processes. One key anthropogenic activity is water resource management that determines the dynamics of human–water interactions in time and space. There are various reasons to include water resource management in Earth System models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human–water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Here, we divide the water resource management into two interdependent elements, related to water demand as well as water supply and allocation. In this paper, we survey the current literature on how various water demands have been included in large-scale models, including Land Surface Schemes and Global Hydrological Models. The available algorithms are classified based on the type of demand, mode of simulation and underlying modeling assumptions. We discuss the pros and cons of available algorithms, address various sources of uncertainty and highlight limitations in current applications. We conclude that current capability of large-scale models in terms of representing human water demands is rather limited, particularly with respect to future projections and online simulations. We argue that current limitations in simulating various human demands and their impact on the Earth System are mainly due to the uncertainties in data support, demand algorithms and large-scale models. To fill these gaps, the available models, algorithms and data for representing various water demands should be systematically tested, intercompared and improved and human water demands should be considered in conjunction with water supply and allocation, particularly in the face of water scarcity and unknown future climate.


2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Arie Herlambang

In the national water resource management, the data is the basis for the calculation of water reserves. In a large scale and wide, searching the data will require substantial funding, as well as with the updates. Data colecting becomes a problem and not useful if not managed with the system efficiently and effectively. Technology occupies an important role in accelerating the work, such as remote sensing technology using a satellite to determine the condition of forests and water, or a weather that can see the concentration of clouds and wind movement. Determination of catchment areas of water and protected areas, may of them using remote sensing technology. Water treatment technologies for drinking water and the development of efficient recycling technology of waste water, is very supportive in increasing water use efficiency. Technological developments also influence government policy and the implementation of water resource management. National Policy of Water Resource Management is influenced by economic factors, environmental sustainability and socio-cultural conditions. The role of technology are  facilitate, accelerate and improve the efficiency of the process, so that the process can be more economical and environmental impact is reduced, and does not conflict with the socio-cultural conditions. Keywords : Kebijakan nasional sumber daya air, potensi sda, teknologi pengolahan air


2021 ◽  
Vol 13 (15) ◽  
pp. 8609
Author(s):  
Sarah Bunney ◽  
Elizabeth Lawson ◽  
Sarah Cotterill ◽  
David Butler

Water resource management in the UK is multifaceted, with a complexity of issues arising from acute and chronic stressors. Below average rainfall in spring 2020 coincided with large-scale changes to domestic water consumption patterns, arising from the first UK-wide COVID-19 lockdown, resulting in increased pressure on nationwide resources. A sector wide survey, semi-structured interviews with sector executives, meteorological data, water resource management plans and market information were used to evaluate the impact of acute and chronic threats on water demand in the UK, and how resilience to both can be increased. The COVID-19 pandemic was a particularly acute threat: water demand increased across the country, it was unpredictable and hard to forecast, and compounding this, below average rainfall resulted in some areas having to tanker in water to ‘top up’ the network. This occurred in regions of the UK that are ‘water stressed’ as well as those that are not. We therefore propose a need to look beyond ‘design droughts’ and ‘dry weather average demand’ to characterise the management and resilience of future water resources. As a sector, we can learn from this acute threat and administer a more integrated approach, combining action on the social value of water, the implementation of water trading and the development of nationwide multi-sectoral resilience plans to better respond to short and long-term disruptors.


Sign in / Sign up

Export Citation Format

Share Document