scholarly journals Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and water planetary boundary

2021 ◽  
Author(s):  
Chinchu Mohan ◽  
Tom Gleeson ◽  
James S. Famiglietti ◽  
Vili Virkki ◽  
Matti Kummu ◽  
...  
2014 ◽  
Vol 11 (7) ◽  
pp. 8239-8298 ◽  
Author(s):  
A. Nazemi ◽  
H. S. Wheater

Abstract. Human activities have caused various changes in the Earth System, and hence, the interconnections between humans and the Earth System should be recognized and reflected in models that simulate the Earth System processes. One key anthropogenic activity is water resource management that determines the dynamics of human–water interactions in time and space. There are various reasons to include water resource management in Earth System models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human–water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Here, we divide the water resource management into two interdependent elements, related to water demand as well as water supply and allocation. In this paper, we survey the current literature on how various water demands have been included in large-scale models, including Land Surface Schemes and Global Hydrological Models. The available algorithms are classified based on the type of demand, mode of simulation and underlying modeling assumptions. We discuss the pros and cons of available algorithms, address various sources of uncertainty and highlight limitations in current applications. We conclude that current capability of large-scale models in terms of representing human water demands is rather limited, particularly with respect to future projections and online simulations. We argue that current limitations in simulating various human demands and their impact on the Earth System are mainly due to the uncertainties in data support, demand algorithms and large-scale models. To fill these gaps, the available models, algorithms and data for representing various water demands should be systematically tested, intercompared and improved and human water demands should be considered in conjunction with water supply and allocation, particularly in the face of water scarcity and unknown future climate.


2018 ◽  
Vol 5 (2) ◽  
Author(s):  
Arie Herlambang

In the national water resource management, the data is the basis for the calculation of water reserves. In a large scale and wide, searching the data will require substantial funding, as well as with the updates. Data colecting becomes a problem and not useful if not managed with the system efficiently and effectively. Technology occupies an important role in accelerating the work, such as remote sensing technology using a satellite to determine the condition of forests and water, or a weather that can see the concentration of clouds and wind movement. Determination of catchment areas of water and protected areas, may of them using remote sensing technology. Water treatment technologies for drinking water and the development of efficient recycling technology of waste water, is very supportive in increasing water use efficiency. Technological developments also influence government policy and the implementation of water resource management. National Policy of Water Resource Management is influenced by economic factors, environmental sustainability and socio-cultural conditions. The role of technology are  facilitate, accelerate and improve the efficiency of the process, so that the process can be more economical and environmental impact is reduced, and does not conflict with the socio-cultural conditions. Keywords : Kebijakan nasional sumber daya air, potensi sda, teknologi pengolahan air


2021 ◽  
Vol 13 (15) ◽  
pp. 8609
Author(s):  
Sarah Bunney ◽  
Elizabeth Lawson ◽  
Sarah Cotterill ◽  
David Butler

Water resource management in the UK is multifaceted, with a complexity of issues arising from acute and chronic stressors. Below average rainfall in spring 2020 coincided with large-scale changes to domestic water consumption patterns, arising from the first UK-wide COVID-19 lockdown, resulting in increased pressure on nationwide resources. A sector wide survey, semi-structured interviews with sector executives, meteorological data, water resource management plans and market information were used to evaluate the impact of acute and chronic threats on water demand in the UK, and how resilience to both can be increased. The COVID-19 pandemic was a particularly acute threat: water demand increased across the country, it was unpredictable and hard to forecast, and compounding this, below average rainfall resulted in some areas having to tanker in water to ‘top up’ the network. This occurred in regions of the UK that are ‘water stressed’ as well as those that are not. We therefore propose a need to look beyond ‘design droughts’ and ‘dry weather average demand’ to characterise the management and resilience of future water resources. As a sector, we can learn from this acute threat and administer a more integrated approach, combining action on the social value of water, the implementation of water trading and the development of nationwide multi-sectoral resilience plans to better respond to short and long-term disruptors.


2014 ◽  
Vol 9 (17) ◽  
pp. 117
Author(s):  
Paula Cecilia Mussetta

Este artículo aborda el campo del manejo de los recursos hídricos y propone un esquema de análisis para estudiar las relaciones entre las instituciones y las prácticas de los actores afectados por las acciones de tales instituciones. Avanza después, en forma preliminar y descriptiva, sobre la exploración de algunas de las categorías presentadas en el esquema propuesto en un caso concreto (Mendoza, Argentina). Reconocemos una doble dinámica de funcionamiento del régimen hídrico: una entre la autoridad hídrica y los grandes y poderosos actores vitícolas y otra entre un conjunto de entidades satélites no hídricas y pequeños productores. Esto lleva a que desde la política hídrica se reproduzca un modelo de producción que claramente beneficia a un sector a costa de otro.   HYDROLOGIC ORDER: PRACTICES AND INSTITUTIONS IN MENDOZA, ARGENTINA This article addresses the territory of water resource management and proposes an analytical framework to study the inter-institutional relationships and practices of the stakeholders affected by the actions taken by those institutions. It explores in a preliminary and descriptive form some of the categories presented in the framework proposed for the specific case of Mendoza, Argentina. It identifies a double working dynamic in the hydrologic regime: one between the hydrologic authorities and large-scale and powerful stakeholders of the wine industry and another dynamic between a series of non-hydrologic satellite entities and small-scale producers. This leads to a hydrologic policy that reproduces a production model that clearly benefits one sector at the expense of another.


2019 ◽  
Vol 49 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Riene Filgueiras de OLIVEIRA ◽  
Cornélio Alberto ZOLIN ◽  
Daniel de Castro VICTORIA ◽  
Tarcio Rocha LOPES ◽  
Laurimar Gonçalves VENDRUSCULO ◽  
...  

ABSTRACT The upper Teles Pires River basin is located in the Brazilian agriculture frontier in the north of Mato Grosso state and has experienced significant changes in land use and cover, which can cause major changes in its hydrological dynamics. Climatic and hydrologic data are scarce in the region, which poses uncertainties in the decision-making process aiming at the sustainable management of water resources in this strategic area. The aim of this study was to evaluate the performance of the Large-Scale Distributed Hydrological Model (MGB-IPH) to assess water availability of the upper Teles Pires basin and support water resource management in the Amazon-Cerrado ecotone. The MGB-IPH model was calibrated and validated using data from three streamflow stations available in the basin. In order to verify the model performance, the Nash-Sutcliffe (NS) and the PBIAS statistical parameters were applied. Our results show that, by using the MGB-IPH model with generally available data, the maximum and minimum flow regimes can be successfully assessed in the upper Teles Pires basin. The continuity curves of daily flow simulated by the model showed a good fit with the observed flow. Overall, the results demonstrated the applicability of the MGB-IPH model for water resource assessment and management in the basin.


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1795 ◽  
Author(s):  
Angelos Alamanos ◽  
Nikitas Mylopoulos ◽  
Athanasios Loukas ◽  
Dimitrios Gaitanaros

Water is involved, directly or indirectly, with many activities and needs that have to be met. The large scale and importance of water projects, the investments needed, the difficulty in predicting the results, and the irreversible character of the decisions have made decision making a complex scientific process. This paper presents a multicriteria analysis (MCA) tool for evaluating water resource management (WRM) strategies and selecting the most appropriate among them, using as an example a Greek area based on agricultural economy, which faces water scarcity problems. Seven alternative strategies were evaluated under hydrological and economic criteria. Four techniques were used—multi attribute utility theory (MAUT), analytic hierarchy process (AHP), elimination and choice expressing reality (ELECTRE), and technique for order of preference by similarity to ideal solution (TOPSIS)—based on the main MCA techniques (utility theory, analytical hierarchy, outranking theory, and classification theory, respectively), to compare their performance, and to reach the most appropriate and ‘fitting’ method for the examined problem. The weightings extracted from two samples, (i) a sample of decision makers/stakeholders and (ii) a group of WRM experts, were used to compare the results. The process was carried out for each questionnaire, and thus the model shows the uncertainty of each sample group and of each method, as well as the overall uncertainty. The results illustrate the reality of the WRM problems of the watershed, enlighten their roots, and have further strengthened our conviction that the cooperation between the scientific community and the authorities is vital for more sustainable and efficient WRM.


2015 ◽  
Vol 19 (1) ◽  
pp. 63-90 ◽  
Author(s):  
A. Nazemi ◽  
H. S. Wheater

Abstract. Human water use has significantly increased during the recent past. Water withdrawals from surface and groundwater sources have altered terrestrial discharge and storage, with large variability in time and space. These withdrawals are driven by sectoral demands for water, but are commonly subject to supply constraints, which determine water allocation. Water supply and allocation, therefore, should be considered together with water demand and appropriately included in Earth system models to address various large-scale effects with or without considering possible climate interactions. In a companion paper, we review the modeling of demand in large-scale models. Here, we review the algorithms developed to represent the elements of water supply and allocation in land surface and global hydrologic models. We note that some potentially important online implications, such as the effects of large reservoirs on land–atmospheric feedbacks, have not yet been fully investigated. Regarding offline implications, we find that there are important elements, such as groundwater availability and withdrawals, and the representation of large reservoirs, which should be improved. We identify major sources of uncertainty in current simulations due to limitations in data support, water allocation algorithms, host large-scale models as well as propagation of various biases across the integrated modeling system. Considering these findings with those highlighted in our companion paper, we note that advancements in computation and coupling techniques as well as improvements in natural and anthropogenic process representation and parameterization in host large-scale models, in conjunction with remote sensing and data assimilation can facilitate inclusion of water resource management at larger scales. Nonetheless, various modeling options should be carefully considered, diagnosed and intercompared. We propose a modular framework to develop integrated models based on multiple hypotheses for data support, water resource management algorithms and host models in a unified uncertainty assessment framework. A key to this development is the availability of regional-scale data for model development, diagnosis and validation. We argue that the time is right for a global initiative, based on regional case studies, to move this agenda forward.


Sign in / Sign up

Export Citation Format

Share Document