Removal of cyanide from synthetic wastewater by combined coagulation and advanced oxidation process

2018 ◽  
Vol 133 ◽  
pp. 204-211 ◽  
Author(s):  
Mohammad Reza Heidari ◽  
Mohammad Malakootian
2017 ◽  
Vol 14 (3) ◽  
pp. 516-523
Author(s):  
Baghdad Science Journal

Decolorization of red azo dye (Cibacron Red FN-R) from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 and 80) % respectively. It can be concluded, from these experiments, that the using of ZnO as a photocatalysis was exhibited as economical and efficient treatment method to remove reactive red dye-238 from aqueous solution.


2020 ◽  
Vol 58 (5A) ◽  
pp. 1
Author(s):  
Tuan Van Le

This work presents batch mode experiments of combination ultrasonic wave (USW) and H2O2 in pre-treatment of landfill leachate. Additionally, in continuous mode experiments, a modified aerated bio-filter (ABF) was designed for the treatment of synthetic wastewater and the leachate (after treatment by USW/H2O2), with the stepwise increasing the volume ratios between the leachate and synthetic wastewater up to 100% of the leachate. The leachate was collected from Thuy Phuong landfill in Thua Thien Hue province, Vietnam, with characterized of color: 14,213 ± 150 PCU (n=3), N-NH4: 1213 ± 148 mg/L (n = 3), COD: 6068 ± 1611 mg/L (n = 3), BOD5: 1211 ± 158 mg/L (n=3), BOD5/COD: ~0.21 and pH ~7.7. The USW/H2O2 had shown a great potential to remove COD, N-NH4 and color of the raw leachate in short treatment time (5 mins). The ABF system was well operated with organic loads (0.26 to 1.13 kg-COD/m3/d), with a very small sludge volume was formed. Moreover, the presence H2O2 can be used for decreasing odor of the leachate. As “green” advanced oxidation process (AOPs), the combination of USW/H2O2 could be used to improve the effectiveness of activated sludge process in treatment of refractory compounds from landfill leachate.


2008 ◽  
Vol 151 (2-3) ◽  
pp. 780-788 ◽  
Author(s):  
M.M. Ballesteros Martín ◽  
J.A. Sánchez Pérez ◽  
F.G. Acién Fernández ◽  
J.L. García Sánchez ◽  
J.L. Casas López ◽  
...  

2019 ◽  
Vol 5 (11) ◽  
pp. 1985-1992 ◽  
Author(s):  
Nor Elhouda Chadi ◽  
Slimane Merouani ◽  
Oualid Hamdaoui ◽  
Mohammed Bouhelassa ◽  
Muthupandian Ashokkumar

We have recently reported that the reaction of H2O2/IO4− could be a new advanced oxidation process for water treatment [N. E. Chadi, S. Merouani, O. Hamdaoui, M. Bouhelassa and M. Ashokkumar, Environ. Sci.: Water Res. Technol., 2019, 5, 1113–1123].


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1686 ◽  
Author(s):  
Carolin Heim ◽  
Mohamad Rajab ◽  
Giorgia Greco ◽  
Sylvia Grosse ◽  
Jörg E. Drewes ◽  
...  

The focus of this study was to investigate the efficacy of applying boron-doped diamond (BDD) electrodes in an electrochemical advanced oxidation process, for the removal of the target compound diclofenac (DCF) in different water matrices. The reduction of DCF, and at the same time the formation of transformation products (TPs) and inorganic by-products, was investigated as a function of electrode settings and the duration of treatment. Kinetic assessments of DCF and possible TPs derived from data from the literature were performed, based on a serial chromatographic separation with reversed-phase liquid chromatographyfollowed by hydophilic interaction liquid chromatography (RPLC-HILIC system) coupled to ESI-TOF mass spectrometry. The application of the BDD electrode resulted in the complete removal of DCF in deionized water, drinking water and wastewater effluents spiked with DCF. As a function of the applied current density, a variety of TPs appeared, including early stage products, structures after ring opening and highly oxidized small molecules. Both the complexity of the water matrix and the electrode settings had a noticeable influence on the treatment process’s efficacy. In order to achieve effective removal of the target compound under economic conditions, and at the same time minimize by-product formation, it is recommended to operate the electrode at a moderate current density and reduce the extent of the treatment.


Sign in / Sign up

Export Citation Format

Share Document