Single and binary component adsorption of endocrine disrupting chemicals from aqueous solutions using calcium alginate/apricot stone-activated carbon composite bead

2020 ◽  
Vol 197 ◽  
pp. 170-181
Author(s):  
Nassima Djebri ◽  
Kamel Noufel ◽  
Nadia Boukhalfa ◽  
Dounia Sid ◽  
Mokhtar Boutahala
2017 ◽  
Vol 36 (1-2) ◽  
pp. 355-371 ◽  
Author(s):  
Fareeda Hayeeye ◽  
Qiming J Yu ◽  
Memoon Sattar ◽  
Watchanida Chinpa ◽  
Orawan Sirichote

Gelatin and activated carbon materials have been combined together to obtain a gelatin/activated carbon composite bead form which is ecofriendly, nontoxic, biocompatible, and inexpensive material. In this paper, gelatin/activated carbon adsorption for Pb2+ ions from aqueous solutions was studied experimentally under various conditions. The experimental conditions such as contact time, solution pH, and gelatin/activated carbon dosage were examined and evaluated by using batch adsorption experiments. The maximum adsorption capacity of gelatin/activated carbon for Pb2+ ions was obtained to be 370.37 mg g−1. This maximum capacity was comparable with that of commercial ion exchange resins and it was much higher than those of natural zeolites. The uptake process for Pb2+ ions was found to be relatively fast with 92.15% of the adsorption completed in about 5 min in batch conditions. The adsorption capacity was also strongly solution pH dependent. Adsorption was observed at pH value as low as 2.0 and maximum adsorption was achieved at a pH of approximately 5. The results indicated that the gelatin/activated carbon was effective to be used as an adsorbent for Pb2+ ions removal in wastewater treatment.


2005 ◽  
Vol 40 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Keun J. Choi ◽  
Sang G. Kim ◽  
Chang W. Kim ◽  
Seung H. Kim

Abstract This study examined the effect of polyphosphate on removal of endocrine-disrupting chemicals (EDCs) such as nonylphenol and bisphenol-A by activated carbons. It was found that polyphosphate aided in the removal of nonylphenol and bisphenol- A. Polyphosphate reacted with nonylphenol, likely through dipole-dipole interaction, which then improved the nonylphenol removal. Calcium interfered with this reaction by causing competition. It was found that polyphosphate could accumulate on carbon while treating a river. The accumulated polyphosphate then aided nonylphenol removal. The extent of accumulation was dependent on the type of carbon. The accumulation occurred more extensively with the wood-based used carbon than with the coal-based used carbon due to the surface charge of the carbon. The negatively charged wood-based carbon attracted the positively charged calcium-polyphosphate complex more strongly than the uncharged coal-based carbon. The polyphosphate-coated activated carbon was also effective in nonylphenol removal. The effect was different depending on the type of carbon. Polyphosphate readily attached onto the wood-based carbon due to its high affinity for polyphosphate. The attached polyphosphate then improved the nonylphenol removal. However, the coating failed to attach polyphosphate onto the coal-based carbon. The nonylphenol removal performance of the coal-based carbon remained unchanged after the polyphosphate coating.


2014 ◽  
Vol 625 ◽  
pp. 106-109 ◽  
Author(s):  
Maimoon Sattar ◽  
Fareeda Hayeeye ◽  
Watchanida Chinpa ◽  
Orawan Sirichote

Polysulfone/Activated Carbon (PSF/AC) composites in bead form were prepared for Rhodamine B sorption. The scanning electron microscope (SEM) shows that pure PSF bead is smooth surface while PSF/AC bead presents the pore distribution. FT-IR spectra indicate the existence of AC on the PSF/AC bead surface. Under adsorption test of Rhodamine B, it was found that an increase in the AC content in PSF solution results in an increase in the percentages of dye adsorption from 1.38 % to 71.56% for pure PSF bead and PSF/AC added with 4 wt% of AC, respectively.


2017 ◽  
Vol 83 ◽  
pp. 294-305 ◽  
Author(s):  
Nassima Djebri ◽  
Nadia Boukhalfa ◽  
Mokhtar Boutahala ◽  
Didier Hauchard ◽  
Nacer-Eddine Chelali ◽  
...  

2013 ◽  
Vol 35 (6) ◽  
pp. 698-708 ◽  
Author(s):  
Constantinos Noutsopoulos ◽  
Daniel Mamais ◽  
Thanasis Mpouras ◽  
Despina Kokkinidou ◽  
Vasilios Samaras ◽  
...  

Author(s):  
Ashraf A. El-Bindary ◽  
Mostafa A. Diab ◽  
Mostafa A. Hussien ◽  
Adel Z. El-Sonbati ◽  
Ahmed M. Eessa

Sign in / Sign up

Export Citation Format

Share Document