Application of response surface methodology for optimization of methylene blue adsorption onto activated carbons prepared from chestnut shell

2021 ◽  
Vol 226 ◽  
pp. 441-451
Author(s):  
Mingyang Zhang ◽  
Xinzhe Liu ◽  
Wenda Li ◽  
Lili Guo ◽  
Zhuowei Tan ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Y. El maguana ◽  
N. Elhadiri ◽  
M. Bouchdoug ◽  
M. Benchanaa ◽  
A. Boussetta

A novel and inexpensive adsorbent was prepared from sugar scum for the removal of methylene blue as an organic pollutant from aqueous solutions. The response surface methodology was used to study the effects of the calcination temperature and time on the yield and the methylene blue adsorption. In order to determine the optimal conditions of the preparation, the Doehlert design and desirability function were applied. The increase in calcination temperature increases the methylene blue adsorption and induces a reduction in yield. The optimal conditions have been identified to be a calcination temperature of 986°C and calcination time of 61 min. The characteristics of the obtained adsorbent were determined using SEM/EDX, and surface functions were obtained based on FTIR and pHpzc. The produced adsorbent had a porous structure and a pHpzc of 12.5. The results showed that the yield was 49.74% and the adsorption of methylene blue was 24.52 mg·g−1 with a contact time of 10 h determined by kinetic test. The sugar scum was found to be an effective material for the preparation of appropriate adsorbent for dye removal from wastewater.


2014 ◽  
Vol 1053 ◽  
pp. 303-310 ◽  
Author(s):  
Mian Wu Meng ◽  
Cong Liang Qi ◽  
Qing Ye Liu ◽  
Liang Lv ◽  
Hao Ai ◽  
...  

A three-factor-three-level experiment was developed by the central composite design (CCD) and Response surface methodology to discuss the effects of concentration of K2CO3, activation temperature and time on the adsorption capacity of the activated carbon (AC) derived from the rice husk and to identify the key preparation parameters. The performance of the AC was characterized by nitrogen adsorption isotherm as Brunauer–Emmett–Teller (BET) and scanning electron microscope (SEM), respectively. The optimal parameters were obtained: Rice husk was soaked in K2CO3 solution (2.32 mol/L) with an impregnation ratio (rice husk: K2CO3=1:3) (wt. %), activated at 1239 K for 0.48 h. The results showed that iodine adsorption capacity of the AC was 1268.52 mg/g, the error between the models predicted (1356.98 mg/g) was only 6.2%. The AC has a large apparent surface area (SBET = 1312 m2/g), total pore volume (0.78 cm3/g) and average pore diameter (11.92 Å).


2015 ◽  
Vol 6 (2) ◽  
pp. 9-14 ◽  
Author(s):  
Surajudeen Olawale Adegboyega ◽  
Ayoola Ajayi Olusegun ◽  
Sunday Olakunle Michael ◽  
Thaddeus Ityokumbul Mku ◽  
Sunday Adefila Sam

Sign in / Sign up

Export Citation Format

Share Document