Photocatalytic removal of Methylene Blue using Ag@CdSe/Zeoilte nanocomposite under visible light irradiation by Response Surface Methodology

2021 ◽  
Vol 267 ◽  
pp. 124696
Author(s):  
Seyyed Amir Mosavi ◽  
Arezoo Ghadi ◽  
Parvin Gharbani ◽  
Ali Mehrizad
2014 ◽  
Vol 1073-1076 ◽  
pp. 336-339
Author(s):  
Tian Qi Li ◽  
Hui Wang ◽  
Ya Qi Zhu ◽  
Zhao Yong Bian

Response surface methodology was applied to investigate the optimum degradation conditions of paracetamol using Ag/BiVO4 photocatalysts under the visible light irradiation. Experimental results show that the optimum degradation conditions were: catalyst dosage quantity was 80 mg, Ag-catalyst loading was 5%, and the initial pH value of the solution was 6, respectively. Under this condition, the degradation efficiency of paracetamol was 77.9% within 5 h under the visible light irradiation.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1509
Author(s):  
Vasi Uddin Siddiqui ◽  
Afzal Ansari ◽  
M. Taazeem Ansari ◽  
Md. Khursheed Akram ◽  
Weqar Ahmad Siddiqi ◽  
...  

In this study, we aimed to observe how different operating parameters influenced the photocatalytic degradation of rhodamine B (RhB, cationic dye) and bromophenol Blue (BPB, anionic dye) over ZnO/CuO under visible light irradiation. This further corroborated the optimization study employing the response surface methodology (RSM) based on central composite design (CCD). The synthesis of the ZnO/CuO nanocomposite was carried out using the co-precipitation method. The synthesized samples were characterized via the XRD, FT-IR, FE-SEM, Raman, and BET techniques. The characterization revealed that the nanostructured ZnO/CuO formulation showed the highest surface area (83.13 m2·g−1). Its surface area was much higher than that of pure ZnO and CuO, thereby inheriting the highest photocatalytic activity. To substantiate this photocatalytic action, the investigative analysis was carried out at room temperature, associating first-order kinetics at a rate constant of 0.0464 min−1 for BPB and 0.07091 min−1 for RhB. We examined and assessed the binary interactions of the catalyst dosage, concentration of dye, and irradiation time. The suggested equation, with a high regression R2 value of 0.99701 for BPB and 0.9977 for RhB, accurately matched the experimental results. Through ANOVA we found that the most relevant individual parameter was the irradiation time, followed by catalyst dose and dye concentration. In a validation experiment, RSM based on CCD was found to be suitable for the optimization of the photocatalytic degradation of BPB and RhB over ZnO/CuO photocatalysts, with 98% degradation efficiency.


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 6383-6394 ◽  
Author(s):  
Haishuai Li ◽  
Linlin Cai ◽  
Xin Wang ◽  
Huixian Shi

A noval ternary nanocomposite AgCl/Ag3PO4/g-C3N4 was successfully synthesized for photocatalytic degradation of methylene blue, methylparaben and inactivation of E. coli under visible light irradiation, showing excellent photocatalytic degradation performance and stability.


2014 ◽  
Vol 29 (20) ◽  
pp. 2473-2482 ◽  
Author(s):  
Yingchang Ke ◽  
Hongxu Guo ◽  
Dongfang Wang ◽  
Jianhua Chen ◽  
Wen Weng

Abstract


Sign in / Sign up

Export Citation Format

Share Document