scholarly journals Comparative Evaluation of Various Temperature Changes on Stress Distribution in Class II Mesial-occlusal-distal Preparation restored with Different Restorative Materials: A Finite Element Analysis

2018 ◽  
Vol 11 (3) ◽  
pp. 167-170 ◽  
Author(s):  
Binita Srivastava ◽  
Neorem N Devi
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1923
Author(s):  
Ana Beatriz Gomes de Carvalho ◽  
‪Guilherme Schmitt de Andrade ◽  
João Paulo Mendes Tribst ◽  
Elisa Donária Aboucauch Grassi ◽  
Pietro Ausiello ◽  
...  

This study evaluated the effect of the combination of three different onlay preparation designs and two restorative materials on the stress distribution, using 3D-finite element analysis. Six models of first lower molars were created according to three preparation designs: non-retentive (nRET), traditional with occlusal isthmus reduction (IST), and traditional without occlusal isthmus reduction (wIST); and according to two restorative materials: lithium-disilicate (LD) and nanoceramic resin (NR). A 600 N axial load was applied at the central fossa. All solids were considered isotropic, homogeneous, and linearly elastic. A static linear analysis was performed, and the Maximum Principal Stress (MPS) criteria were used to evaluate the results and compare the stress in MPa on the restoration, cement layer, and tooth structure (enamel and dentin). A novel statistical approach was used for quantitative analysis of the finite element analysis results. On restoration and cement layer, nRET showed a more homogeneous stress distribution, while the highest stress peaks were calculated for LD onlays (restoration: 69–110; cement layer: 10.2–13.3). On the tooth structure, the material had more influence, with better results for LD (27–38). It can be concluded that nRET design showed the best mechanical behavior compared to IST and wIST, with LD being more advantageous for tooth structure and NR for the restoration and cement layer.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Şemsi Alp ◽  
Laden Gulec Alagoz ◽  
Nuran Ulusoy

The aim of this study is to investigate the stress distributions of different restoration options for class II mesio-occluso-distal (MOD) cavities. A class II MOD cavity with proximal box gingival floor 1 mm below cementoenamel junction was designed in a mandibular first molar tooth model. 3D finite-element analysis (FEA) and 3D-CAD modelling were used to examine the occlusal stresses distributed to the remaining buccal enamel (RBE), remaining lingual enamel (RLE), adhesive surfaces, and restorative materials by direct and indirect materials resulting from a 600 N of static occlusal load stimulating foodstuff. von Mises (VM) and maximum principal (Pmax) stresses were evaluated for two CAD/CAM materials and three direct materials. CAD/CAM materials exerted less stress than the direct restorative materials. Significant von Mises and Pmax stress value differences were seen among all restoration models on RBE. Reducing RLE and including it into the cavity would be a more effective option for this model in this scenario. As VM and Pmax stresses of PIHC CAD/CAM material for RBE and dentin were significantly lower than other tested materials, it may be the choice of material for indirect MOD restorations.


2020 ◽  
Vol 21 (8) ◽  
pp. 891-896
Author(s):  
Abhilash Mohapatra ◽  
Sitansu S Das ◽  
Gulshan K Tomar ◽  
Mirna Garhnayak ◽  
Abhijita Mahapatra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document