Threshold Chloride Concentrations of Selected Corrosion-Resistant Rebar Materials Compared to Carbon Steel

CORROSION ◽  
2006 ◽  
Vol 62 (10) ◽  
pp. 892-904 ◽  
Author(s):  
M. F. Hurley ◽  
J. R. Scully

Abstract The threshold chloride concentration for solid Type 316LN (UNS S31653) stainless steel, Type 316L (UNS S31603) stainless steel clad, 2101 (UNS S32101), Fe-9%Cr, and carbon steel rebar (ordinary ASTM A 615M) was investigated using potentiodynamic and potentiostatic current monitoring techniques in saturated calcium hydroxide (Ca[OH]2) + sodium chloride (NaCl) solutions. There is general consensus in this study and the literature that the chloride threshold for carbon steel is less than a chloride to hydroxl (Cl−/OH−) molar ratio of 1. Solid Type 316LN stainless steel rebar was found to have a much higher chloride threshold (i.e., threshold Cl−/OH− ratio > 20) than carbon steel (0.25 < Cl−/OH−< 0.34). Type 316L stainless steel clad rebar possessed a chloride threshold expressed as a Cl−/OH− ratio of 4.9 when cladding was intact. However, surface preparation, test method, duration of period exposed to a passivating condition prior to the introduction of chloride, and the presence of cladding defects all affected the threshold chloride concentration obtained. For instance, the presence of mill scale on any of the more corrosion-resistant materials reduced the chloride threshold to approximately that of carbon steel. The chloride threshold for Type 316L clad rebar was highly dependent on any defects that exposed the carbon steel core. At best, it was similar to that of solid stainless steel. However, when defective, it was equal to that of carbon steel rebar in the potentiostatic method used here. A model was implemented to predict the extension of the Cl− diffusion time period until corrosion initiation would be expected using rebar materials with a higher chloride threshold concentration than carbon steel. Model results confirmed that corrosion-resistant rebar materials in a pickled condition may increase time until chloride-induced breakdown of passivity and onset of corrosion to 100 years or more.

Author(s):  
Liang Zhao ◽  
Kunjie Luo

According to YB/T 5362-2006 “stainless steel stress corrosion test method in boiling magnesium chloride solution”, the sensitivity of the stress corrosion of three typical materials (304L, 2205, Alloy 825) was investigated in boiling magnesium chloride solution (experimental temperature is 143±1 °C, concentration of magnesium chloride is 43%). The results show that under the condition of constant strain, the corrosion resistant performance of 825 material is far better than 304L, and the corrosion resistance of dual phase steel may not be superior than that of austenitic stainless steel.


Author(s):  
Roy Johnsen ◽  
Ba˚rd Nyhus ◽  
Stig Wa¨stberg

There has been an increasing trend in the use of stainless steel alloys instead of carbon steel for subsea flowlines and production systems during the last 15 years in the oil industry. Even if this normally is a more robust solution compared to the use of carbon steel insofar as internal corrosion problems are concerned, the use of stainless steels has led to leakage, production shutdown and expensive repair work. The reported failures were associated with hydrogen entrapment resulting from welding and/or external cathodic protection (CP), combined with a certain stress/strain level. Atomic hydrogen entering the alloy can weaken the mechanical strength of the alloy, cause cracks and destroy the integrity of equipment or a system. Such failures attributed to hydrogen induced stress cracking (HISC) are clearly not acceptable from the perspective of safety, environmental hazard and cost. Leading oil and engineering companies and supplier industry have pointed out HISC as one of the major obstacles against safe operation of stainless steel subsea pipelines and production systems. It is important for the oil industry to have design guidelines and reliable test method(s) for qualification and safe utilization of subsea pipelines and components made from the actual stainless steels. This paper describes a test method that has been developed through a Joint Industry Project (JIP) executed by SINTEF and Det Norske Veritas (DNV) with support from leading oil companies and material suppliers. The method has been qualified for use on 13% Cr super martensitic (SMSS) and 22% Cr / 25% Cr duplex stainless steels (DSS/SDSS). The link to DNV-RP-F112 [1] will also be described.


2021 ◽  
Author(s):  
John Wright ◽  
Chris Pantelides

Abstract Axial compression performance of concrete columns reinforced with 2304 duplex stainless bars and spirals, carbon steel bars and spirals, and 316L stainless steel clad bars, in varying combinations is examined when the columns are exposed to corrosion. Two groups of columns were investigated: a control group, and a group submerged in a 5.0% by weight chloride solution subjected to accelerated corrosion. A relatively high corrosion rate of 8.5 μA/mm2 was used. After 60 days of corrosion the columns were tested to failure under axial compression. In terms of mass loss per unit of corrosion energy, columns reinforced with stainless steel spirals and either solid stainless or stainless clad vertical bars were 197% more corrosion resistant than carbon steel. Bars made with 2304 stainless steel and 316L stainless clad materials developed localized pitting corrosion that led to degradation of the concrete cover and a larger drop in axial compression than carbon steel reinforced columns. However, the all-carbon steel reinforced columns reached lower failure displacements and a corroded carbon steel reinforced column was the only column to experience sudden failure prior to reaching its theoretical maximum axial compression capacity. Axial compression capacity of the columns in both the control and corroded conditions was modeled using concrete confinement models that produced very good agreement with the experimental results.


2021 ◽  
Author(s):  
John Wright ◽  
Chris Pantelides

Abstract Axial compression performance of concrete columns reinforced with 2304 solid stainless bars and spirals, carbon steel bars and spirals, and 316L stainless steel clad bars is examined after the columns are exposed to severe corrosion. Two groups of columns were investigated: a control group, and a group submerged in a 5.0% by weight chloride solution subjected to accelerated corrosion. A relatively high impressed current density of 8.5 μA/mm2 was used and after 60 days of accelerated corrosion the columns were tested to failure under axial compression. In terms of mass loss per unit of corrosion energy, columns reinforced with stainless steel spirals and either solid stainless or stainless clad vertical bars were 197% more corrosion resistant than carbon steel. Bars made with 2304 solid stainless steel and 316L stainless clad materials developed localized pitting corrosion that led to degradation of the concrete cover and a larger drop in axial compression than carbon steel reinforced columns. However, the carbon steel reinforced columns reached lower failure displacements and a corroded carbon steel reinforced column was the only column to experience sudden failure prior to reaching its theoretical maximum axial compression capacity. Axial compression capacity of the columns in both the control and corroded conditions was modeled using concrete confinement models that produced good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document