chloride threshold
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7595
Author(s):  
Abdulrahman M. Alhozaimy ◽  
Mshtaq Ahmed ◽  
Raja Rizwan Hussain ◽  
Abdulaziz Al-Negheimish

This paper investigates the effect of high ambient temperatures on the chloride threshold value for reinforced concrete (RC) structures. Two commonly available carbon steel rebars were investigated under four different exposure temperatures (20 °C (68 °F), 35 °C (95 °F), 50 °C (122 °F), and 65 °C (149 °C)) using environmental chambers at a constant relative humidity of 80%. For each temperature, six different levels of added chloride ions (0.00%, 0.15%, 0.30%, 0.60%, 0.90%, and 1.20% by weight of cement) were used to study the chloride threshold value. Corrosion initiation was detected by monitoring the corrosion potential and corrosion rate using electrochemical techniques. The water-soluble (free) and acid-soluble (total) chlorides were determined using potentiometric titration according to the relevant ASTM standards. The threshold chloride content for each exposure temperature was determined by analyzing the corrosion potential, corrosion rate, and chloride content of each specimen. The results showed that the chloride threshold values were significantly temperature-dependent. At temperatures of 20 °C (68 °F) and 35 °C (95 °F), the chloride threshold value (expressed as free chlorides) was approximately 0.95% by weight of cement. However, as the temperature increased to 50 °C (122 °F), the chloride threshold decreased significantly to approximately 0.70% by weight of cement. The reduction in the chloride threshold value became more dramatic at an exposure temperature of 65 °C (149 °F), decreasing to approximately 0.25% by weight of cement. The trends were similar for the rebars from the two sources, indicating that the rebar source had little influence on the chloride threshold value.


Signals ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 413-433
Author(s):  
Ahmad Shoaib Amiri ◽  
Ece Erdogmus ◽  
Dana Richter-Egger

This article presents the advantages and limitations of a recently developed Ultrasonic Guided Wave Leakage (UGWL) method in comparison to the well-known Half-Cell Potential (HCP) method in their ability to detect corrosion in reinforced concrete (RC) bridge decks. This research also establishes a correlation between UGWL data and chloride content in concrete RC slabs. Concrete slabs submerged in a 10% NaCl solution were monitored using both methods over a period of six months. The chloride content from the three cores (0.84, 0.55, and 0.18%) extracted from the slab after the 6-month long process all exceeded the chloride threshold values suggested in ACI 318, which is 0.05 to 0.1% by weight of concrete. Further, the UGWL method detected changes due to corrosion approximately 21 days earlier than the HCP method.


2021 ◽  
Vol 185 ◽  
pp. 109460
Author(s):  
Digby D. Macdonald ◽  
Yakun Zhu ◽  
Jie Yang ◽  
Jie Qiu ◽  
George R. Engelhardt ◽  
...  

2021 ◽  
Vol 185 ◽  
pp. 109439 ◽  
Author(s):  
Yakun Zhu ◽  
Digby D. Macdonald ◽  
Jie Yang ◽  
Jie Qiu ◽  
George R. Engelhardt

Sign in / Sign up

Export Citation Format

Share Document