Depassivation Time of Steel Reinforcement in a Chloride Environment — A One-Dimensional Solution

CORROSION ◽  
1989 ◽  
Vol 45 (1) ◽  
pp. 43-48 ◽  
Author(s):  
E. V. Subramanian ◽  
H. G. Wheat
1997 ◽  
Vol 39 (4) ◽  
pp. 739-759 ◽  
Author(s):  
P. Arora ◽  
B.N. Popov ◽  
B. Haran ◽  
M. Ramasubramanian ◽  
S. Popova ◽  
...  

2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Subrata K. Ghosh ◽  
R. K. Sahoo ◽  
Sunil K. Sarangi

A study has been conducted to determine the off-design performance of cryogenic turboexpander. A theoretical model to predict the losses in the components of the turboexpander along the fluid flow path has been developed. The model uses a one-dimensional solution of flow conditions through the turbine along the mean streamline. In this analysis, the changes of fluid and flow properties between different components of turboexpander have been considered. Overall, turbine geometry, pressure ratio, and mass flow rate are input information. The output includes performance and velocity diagram parameters for any number of given speeds over a range of turbine pressure ratio. The procedure allows any arbitrary combination of fluid species, inlet conditions, and expansion ratio since the fluid properties are properly taken care of in the relevant equations. The computational process is illustrated with an example.


2021 ◽  
Vol 7 (1(37)) ◽  
pp. 9-22
Author(s):  
E.G. Yakubovsky

This article proposes an algorithm to describe the motion of a body in the atmosphere using the added mass. Attached mass is the property of a medium to form additional mass, as I assume with a relativistic denominator at the speed of sound instead of the speed of light. Newton’s second law for added mass assumes two terms with the same speed, one is relativistic at the speed of light, and the other is attached mass with a relativistic denominator at the speed of sound. The use of a relativistic denominator with the speed of sound is a new idea that allows, according to well-known formulas with added mass, which is valid at low speeds of a body, to describe


1967 ◽  
Vol 182 (1) ◽  
pp. 595-602 ◽  
Author(s):  
P. Dransfield ◽  
D. M. Bruce ◽  
M. Wadsworth

The present state of knowledge on the hydraulic lock phenomena of oil hydraulic control system components is reviewed briefly. A general one-dimensional solution of the Reynolds equation which governs hydraulic lock is presented. The solution embraces the particular solutions of past workers, and allows ready solution for piston-cylinder configurations for which a one-dimensional solution is adequate. A general method for making full solutions of the Reynolds equation is presented, requiring the use of a digital computer for particular solutions. Pressure distribution, the lateral force on the piston which produces hydraulic lock, and the location of the lateral force can be obtained. The commonly occurring case of a single-land piston lying tilted in its bore is examined in detail. The limit of accuracy of a one-dimensional solution is clearly shown by illustrating the discrepancies between the one-dimensional and two-dimensional solutions for several configurations.


2013 ◽  
Vol 361-363 ◽  
pp. 386-390 ◽  
Author(s):  
J Daniel Mena Baladés ◽  
Ismael Rodríguez Maestre ◽  
Pascual Álvarez Gómez ◽  
J. Luis Foncubierta Blázquez

The ground-coupled heat transfer in buildings is a complex, transient and multidimensional problem. There have been many studies focused to obtain the heat flux in slab and basement foundations. Most of them include the multidimensional effects occur at the perimeter however there are situations in which the heat transfer is mainly one-dimensional. This paper presents a study that aims to establish the accurate of an analytical one-dimensional solution to estimate the ground-coupled heat transfer. Detailed simulation by using finite element software is used to obtain the total heat flux at indoor surface of the building for a whole year. Typical slabs and basements foundations for different dimensions have been analyzed. A correlation to estimate the relative error is proposed.


1989 ◽  
Vol 32 (4) ◽  
pp. 454-456
Author(s):  
G. Fabricatore ◽  
F. Gasparini ◽  
G. Miano

1969 ◽  
Vol 37 (3) ◽  
pp. 587-600 ◽  
Author(s):  
B. J. Bellhouse

The distribution of pressure in normal and stenosed aortic valves is investigated experimentally with a rigid-walled model placed in a pulsatile water-tunnel, and the experiments are complemented by a one-dimensional solution of the unsteady inviscid-flow equations. In the normal valve, convectively fed vortices are formed in the aortic sinuses; the vortices aid cusp positioning and the prevention of jet formation during valve closure. Aortic valve stenosis is shown to prevent the generation of vortices, causing the formation of a turbulent jet, with reduction of the pressure difference between the inlets (ostia) of the coronary arteries and the ventricle. This pressure difference is calculated for man resting and exercising, and for various degrees of stenosis.


Sign in / Sign up

Export Citation Format

Share Document