scholarly journals Electrical Conductivity, Dielectric Behavior and EMI Shielding Effectiveness of Polyaniline-Yttrium Oxide Composites

2013 ◽  
Vol 34 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Muhammad Faisal ◽  
Syed Khasim

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2690 ◽  
Author(s):  
Saboor ◽  
Khalid ◽  
Jan ◽  
Khan ◽  
Farooq ◽  
...  

Liquid exfoliated molybdenum disulfide (MoS2) nanosheets and polyaniline (PANI) nanoparticles are dispersed in polystyrene (PS) matrix to fabricate hybrid polymer composites with high dielectric and electromagnetic interference (EMI) shielding behavior. A phase-separated morphology is formed when PANI and MoS2 are incorporated into polystyrene (PS) matrix. An increasing concentration of MoS2 nanoparticles inside PS/PANI (5 wt %) polymer blend forms an interconnected network, resulting in high electrical conductivity and dielectric behavior, making them a suitable candidate for EMI shielding application. An increment in dielectric constant and loss, up to four and five orders of magnitude, respectively, is recorded at a maximum concentration of 1 wt % of MoS2 in PS/PANI-5 polymer blend at 100 Hz. The enhanced dielectric characteristics for PS/PANI/MoS2 composites are then theoretically evaluated for the estimation of EMI shielding effectiveness in the frequency range of 100 Hz to 5 MHz. The maximum dielectric constant and loss achieved for PS/PANI-5 wt %/MoS2-1 wt % are responsible for estimated shielding effectiveness of around 92 dB at 100 Hz. The increase in dielectric behavior and shielding effectiveness is probably due to the increased number of charged dipoles accumulated at the insulator–conductor interface.



Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7782-7791 ◽  
Author(s):  
Yanhu Zhan ◽  
Emanuele Lago ◽  
Chiara Santillo ◽  
Antonio Esaú Del Río Castillo ◽  
Shuai Hao ◽  
...  

A carbon nanotube/boron nitride/rubber composite with anisotropic electrical conductivity exhibits an EMI shielding effectiveness of 22.41 dB mm−1 and a thermal conductivity equal to 0.25 W m−1 K−1.



RSC Advances ◽  
2016 ◽  
Vol 6 (57) ◽  
pp. 51900-51907 ◽  
Author(s):  
Kai Wu ◽  
Linyu Wu ◽  
Weixing Yang ◽  
Songgang Chai ◽  
Feng Chen ◽  
...  

The core–shell structure of surface conductive SiO2@rGO could result in enhanced electrical conductivity and EMI shielding effectiveness as due to both synergistic effect and volume exclusion effect.



Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7551
Author(s):  
Hui Jing ◽  
Zongnan Miao ◽  
Zhong Zeng ◽  
Hui Liu ◽  
Shengtai Zhou ◽  
...  

Lightweight carbon foams with excellent electromagnetic interference (EMI) shielding performance were prepared by carbonization process, using isocyanate-based polyimide foams as carbon precursors. The influence of carbonization temperature and graphene-doping on the morphological, electrical and EMI shielding effectiveness (SE) of corresponding carbon foams was studied in detail. Results showed that the addition of graphene was beneficial to the improvement of electrical conductivity and EMI shielding performance of carbon foams. The electrical conductivity of carbon foams increased with the carbonization temperature which was related to the increase of graphitization degree. Collapse of foam cells was observed at higher carbonization temperatures, which was detrimental to the overall EMI SE. The optimal carbonization temperature was found at 1100 °C and the carbon foams obtained from 0.5 wt% graphene-doped foams exhibited a specific EMI SE of 2886 dB/(g/cm3), which shows potential applications in fields such as aerospace, aeronautics and electronics.



NANO ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 2050157
Author(s):  
Shaofeng lin ◽  
Qing Zheng ◽  
Bowen Lei ◽  
Jianwei Zhang ◽  
Dazhi Jiang

Three kinds of diamine monomers [ethylenediamine, butylenediamine and [Formula: see text]-phenylenediamine (PPD)] are adopted to cross-link carboxylated graphene (GP-COOH) sheets through filtration with a vacuum-assisted self-assembly technique, to fabricate highly conductive and excellent electromagnetic interference (EMI) shielding films. XRD spectroscopy of cross-linked graphene films exhibits higher interlayer [Formula: see text]-spacing than the GP-COOH film. Results of FTIR and XPS spectroscopies indicate that diamine monomers are chemically grafted to the GP-COOH sheets through nucleophilic substitution reactions. Compared with that of the GP-COOH film, electrical conductivity of the PPD-cross-linked graphene film (GP-PPD) is remarkably improved from 69.7[Formula: see text]S/cm to 248.6[Formula: see text]S/cm, attributed to the decrease of junction contact resistance between adjacent graphene sheets, nitrogen doping effect and repair of defects. Higher nitrogen content and C/O ratio are observed in the XPS spectra of the GP-PPD film, leading to higher electrical conductivity than the remaining two amine-modified graphene films. The GP-PPD film also demonstrates excellent EMI shielding performance, with EMI shielding effectiveness (SE) of 26.5 dB at a thickness of 12.5[Formula: see text][Formula: see text]m, which is also better than the others. The outstanding EMI performance of the PPD-cross-linked graphene film is mainly ascribed to the enhanced electrical conductivity and modified electronic structure with nitrogen doping.





2019 ◽  
Vol 956 ◽  
pp. 87-98 ◽  
Author(s):  
Wei Liu ◽  
Kun Jia ◽  
Jiang Jiang Ma ◽  
Dong Hong Wang ◽  
Jian Yu Gu ◽  
...  

A series of flexible graphene/carbon nanotubes (CNTs) hybrid papers were prepared by a facile impregnation method using cellulose papers as substrate. The impregnation cycles and sequence have a great impact on microstructure, electrical conductivity and electromagnetic interference (EMI) shielding performance of graphene/CNTs hybrid papers. The results showed that the surface of cellulose papers was covered by graphene and CNTs, forming continuous conductive networks. The graphene/CNTs hybrid papers achieved a thickness range of 174.7-253.2 μm and areal density range of 26-35.7 g/m2, which presented a larger advantage than traditional EMI shielding materials. The electrical conductivity was increased from 0.33 S/cm to 7.63 S/cm with the increase of impregnation cycles from 1 to 5. Furthermore, graphene/CNTs hybrid papers delivered a high EMI shielding effectiveness of 22-32 dB in the frequency of 30-1500MHz, which was superior to single graphene or CNTs papers. Moreover, the electrical conductivity and EMI shielding effectiveness of as-prepared graphene/CNTs hybrid papers presented little decline after even bending 100 times at an angle of 180° owing to their excellent flexibility. The graphene/CNTs hybrid papers possess a huge application potential in electromagnetic compatibility (EMC) of electronic device. Key words: graphene; carbon nanotubes; electromagnetic interference shielding; cellulose paper; dielectric polarization



Sign in / Sign up

Export Citation Format

Share Document