Real Time Implementation of Fuzzy Based Adaptive PI Controller for a Spherical Tank System

Author(s):  
A Ganesh Ram
2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
V. Rajinikanth ◽  
K. Latha

An enhanced bacteria foraging optimization (EBFO) algorithm-based Proportional + integral + derivative (PID) controller tuning is proposed for a class of nonlinear process models. The EBFO algorithm is a modified form of standard BFO algorithm. A multiobjective performance index is considered to guide the EBFO algorithm for discovering the best possible value of controller parameters. The efficiency of the proposed scheme has been validated through a comparative study with classical BFO, adaptive BFO, PSO, and GA based controller tuning methods proposed in the literature. The proposed algorithm is tested in real time on a nonlinear spherical tank system. The real-time results show that, EBFO tuned PID controller gives a smooth response for setpoint tracking performance.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Priya C ◽  
Lakshmi Ponnnusamy

The aim of this paper is to obtain the mathematical model and the real time model of the Single Input Single Output (SISO) conical tank system. The experimental model is obtained from the open loop response in real time and the transfer function is obtained using the two point method. For the real time model, two different controllers namely Zeigler Nichols tuned PI controller and passivity based controller are designed and tested in simulation and the performance of both the controllers are tested for servo operation and regulatory operation. The designed controllers are tested in Simulation and the response is recorded. The simulation results shows that the Passivity based Controller works better for the spherical tank process.


2008 ◽  
Vol 2008 ◽  
pp. 1-9 ◽  
Author(s):  
N. Kanagaraj ◽  
P. Sivashanmugam ◽  
S. Paramasivam

This paper presents the real-time implementation of a fuzzy coordinated classical PI control scheme for controlling the pressure in a pilot pressure tank system. The fuzzy system has been designed to track the variation parameters in a feedback loop and tune the classical controller to achieve a better control action for load disturbances and set point changes. The error and process inputs are chosen as the inputs of fuzzy system to tune the conventional PI controller according to the process condition. This online conventional controller tuning technique will reduce the human involvement in controller tuning and increase the operating range of the conventional controller. The proposed control algorithm is experimentally implemented for the real-time pressure control of a pilot air tank system and validated using a high-speed 32-bit ARM7 embedded microcontroller board (ATMEL AT91M55800A). To demonstrate the performance of the fuzzy coordinated PI control scheme, results are compared with a classical PI and PI-type fuzzy control method. It is observed that the proposed controller structure is able to quickly track the parameter variation and perform better in load disturbances and also for set point changes.


Sign in / Sign up

Export Citation Format

Share Document