scholarly journals Transitions in diatom assemblages and pigments through dry and wet season conditions in the Red River, Hanoi (Vietnam)

2019 ◽  
Vol 152 (2) ◽  
pp. 163-177 ◽  
Author(s):  
Thi Thuy Duong ◽  
Hai Yen Nguyen ◽  
Thi Phuong Quynh Le ◽  
Trung Kien Nguyen ◽  
Thi Thu Huong Tran ◽  
...  

Background and aims – Biomonitoring is an important tool for assessing river water quality, but is not routinely applied in tropical rivers. Marked hydrological changes can occur between wet and dry season conditions in the tropics. Thus, a prerequisite for ecological assessment is that the influence of ‘natural’ hydrological change on biota can be distinguished from variability driven by water quality parameters of interest. Here we aimed to (a) assess seasonal changes in water quality, diatoms and algal assemblages from river phytoplankton and artificial substrates through the dry-wet season transition (February–July 2018) in the Red River close to Hanoi and (b) evaluate the potential for microscopic counts and high-performance liquid chromatography (HPLC) analysis of chlorophyll and carotenoid pigments for biomonitoring in large tropical rivers. Methods – River water (phytoplankton) and biofilms grown on artificial glass substrates were sampled monthly through the dry (February–April) to wet (May–August) season transition and analysed via microscopic and HPLC techniques. Key results – All phototrophic communities shifted markedly between the dry and wet seasons. Phytoplankton concentrations were low (c. thousands of cells/mL) and declined as the wet season progressed. The dominant phytoplankton taxa were centric diatoms (Aulacoseira granulata and Aulacoseira distans) and chlorophytes (Scenedesmus and Pediastrum spp.), with chlorophytes becoming more dominant in the wet season. Biofilm diatoms were dominated by Melosira varians, and areal densities declined in the wet season when fast-growing pioneer diatom taxa (e.g. Achnanthidium minutissimum, Planothidium lanceolatum) and non-degraded Chlorophyll a concentrations increased, suggesting active phytobenthos growth in response to scour damage. Otherwise, a-phorbins were very abundant in river seston and biofilms indicating in situ Chlorophyll a degradation which may be typical of tropical river environments. The very large range of total suspended solids (reaching > 120 mg/L) and turbidity appears to be a key driver of photoautotrophs through control of light availability. Conclusions – Hydrological change and associated turbidity conditions exceed nutrient influences on photoautotrophs at inter-seasonal scales in this part of the Red River. Inter-seasonal differences might be a useful measure for biomonitoring to help track how changes in suspended solids, a major water quality issue in tropical rivers, interact with other variables of interest.

1996 ◽  
Vol 47 (6) ◽  
pp. 763 ◽  
Author(s):  
EG Abal ◽  
WC Dennison

Correlations between water quality parameters and seagrass depth penetration were developed for use as a biological indicator of integrated light availability and long-term trends in water quality. A year-long water quality monitoring programme in Moreton Bay was coupled with a series of seagrass depth transects. A strong gradient between the western (landward) and eastern (seaward) portions of Moreton Bay was observed in both water quality and seagrass depth range. Higher concentrations of chlorophyll a, total suspended solids, dissolved and total nutrients, and light attenuation coefficients in the water column and correspondingly shallower depth limits of the seagrass Zostera capricorni were observed in the western portions of the bay. Relatively high correlation coefficient values (r2 > 0.8) were observed between light attenuation coefficient, total suspended solids, chlorophyll a, total Kjeldahl nitrogen and Zostera capricorni depth range. Low correlation coefficient values (r2 < 0.8) between seagrass depth range and dissolved inorganic nutrients were observed. Seagrasses had disappeared over a five-year period near the mouth of the Logan River, a turbid river with increased land use in its watershed. At a site 9 km from the river mouth, a significant decrease in seagrass depth range corresponded to higher light attenuation, chlorophyll a, total suspended solids and total nitrogen content relative to a site 21 km from the river mouth. Seagrass depth penetration thus appears to be a sensitive bio-indicator of some water quality parameters, with application for water quality management.


2015 ◽  
Vol 41 (1) ◽  
pp. 13-19
Author(s):  
Kaniz Fatema ◽  
Wan Maznah Wan Omar ◽  
Mansor Mat Isa

Water quality in three different stations of Merbok estuary was investigated limnologically from October, 2010 to September, 2011. Water temperature, transparency and total suspended solids (TSS) varied from 27.45 - 30.450C, 7.5 - 120 cm and 10 -140 mg/l, respectively. Dissolved Oxygen (DO) concentration ranged from 1.22-10.8 mg/l, while salinity ranged from 3.5-35.00 ppt. pH and conductivity ranged from 6.35 - 8.25 and 40 - 380 ?S/cm, respectively. Kruskal Wallis H test shows that water quality parameters were significantly different among the sampling months and stations (p<0.05). This study revealed that DO, salinity, conductivity and transparency were higher in wet season and TSS was higher in dry season. On the other hand, temperature and pH did not follow any seasonal trends.Bangladesh J. Zool. 41(1): 13-19, 2013


1998 ◽  
Vol 76 (2) ◽  
pp. 251-257 ◽  
Author(s):  
Euan D Reavie ◽  
John P Smol

Epilithic diatoms were sampled at 48 sites along the St. Lawrence River, from Salaberry de Valleyfield to Québec City, in an attempt to determine how diatom assemblages were related to measured water quality variables. Canonical correspondence analysis was used to explore the relationships between environmental variables and patterns in the epilithic diatom assemblages. "Distance downstream from Cornwall" was determined to be the strongest variable influencing the structure of epilithic diatom assemblages, likely due to the effect of tides (favouring aerophilic species) closer to the river outlet. Variables related to pollution (suspended solids, fecal coliforms, chlorophyll a) also explained significant (P < 0.05) amounts of variance in the diatom assemblages. The optima of common diatom species to suspended solids were explored further. Reconstructive models using weighted-averaging calibration and regression illustrated that "distance from Cornwall" and concentrations of suspended solids, fecal coliforms, and chlorophyll a, the most influential variables, could be inferred from the diatom assemblages. When compared with the inference models developed for pollution variables using epiphytic diatom assemblages (attached to macrophytes or Cladophora), the epilithon model appears to perform better.Key words: diatoms, rocks, epilithic, St. Lawrence River, water quality, calibration.


2021 ◽  
Vol 17 (10) ◽  
Author(s):  
Kanga Idé Soumaila ◽  
Naimi Mustapha ◽  
Chikhaoui Mohamed

The aim of this study is to access the quality of monitored rivers and to map the polluted river sections in the Sebou basin using Geographic Information System (GIS). The potential causes of water quality variation will also be added for suitable measures to be taken. A Water Quality Index (WQI) which developed in Morocco was applied to 17 river water quality monitoring stations with data on 6 parameters (Dissolved oxygen (DO), ammonium ion (NH4 + ), 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), fecal coliforms (FC) and total phosphorus (TP)) collected twice during the wet and dry season over 1990-2017 period. The result shows that river water quality is classified as bad, very bad and medium at 59% of the monitoring stations, while 41% are considered as good to excellent. Interpolation of mean values of overall WQI of the 17 river water quality monitoring stations, revealed evidence of quality degradation along several kilometers of most river sections in the Sebou basin. The correlation matrix between the sub-indices of water quality parameters and the overall WQI showed high positive correlation coefficients and highlights the contribution to water quality degradation as follows: TP (𝑟 = +0.96 ) ≥ NH4 + (𝑟 = +0.96 ) > BOD5 (𝑟 = +0.94) > COD (𝑟 = +0.86) > FC (𝑟 = +0.83) > DO (𝑟 = +0.79). The sections of Fès, Innaounene Rivers, and an extended stretch of Tizguit River must no longer be used for irrigation. River water quality is overall of better quality in the wet season compared to the dry season. Simple linear regressions between the seasonal water quality variation and the overall WQI showed higher coefficients of determination R 2 (0.67 and 0.60) between dry season WQI and the overall WQI and between wet season WQI and the overall WQI respectively. It is clear that discharges of industrial and domestic wastewater during the dry season and agricultural activities are most likely to be the causes of the degradation of river water quality.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Muhammad Lukman ◽  
Andriani Nasir ◽  
Khairul Amri ◽  
Rahmadi Tambaru ◽  
Muhammad Hatta ◽  
...  

ABSTRACT Dissolved silicate (DSi) in coastal waters plays a crucial role in phytoplankton growth particularly diatom. This study aimed to determine DSi concentration seasonally in waters of the western coast of South Sulawesi in relation to coastal water quality indicator. Water, chlorophyll-a, and diatom samples were collected from the coastal areas of the Tallo-Makassar, Maros, and Pangkep, in April 2013 (transitional season), June 2013 (dry season), and February 2014 (wet season). Factorial analysis of variance was used to identify significant seasonal and temporal variations, and linear regression was used to test the relationship of chlorophyll-a and diatom abundance to DSi concentrations. The results showed that the DSi concentration was higher in the wet season of 35.2-85.2 µM than in the other seasons (transitional season: 10.8-68.4 µM, dry season: 9.59-24.1 µM). The abundance of diatoms during the transitional season reached ~9.7x107 cell/m3 in the Pangkep river, 2.3x107 cell/m3 in the Tallo river, and 1.3 x 107 cell/m3 in the Maros river. Chaetoceros, Nitzschia, and Rhizosolenia dominated the diatom composition. The mean concentration of chlorophyll-a in the Makassar coastal waters was 4.52±4.66 mg/m3, while in the Maros and Pangkep waters of 1.40±1.06, and 2.72±1.94  mg/m3, respectively. There was no strong linear corelation between DSi and diatom abundances, nor chlorophyll-a. These results suggested that DSi become a non-limiting factor for the diatom growth and potentially reduce the water quality via eutrophication and diatom blooms. Keywords: dissolved silicate, diatom, chlorophyll-a, coastal waters, South Sulawesi


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Muhammad Lukman ◽  
Andriani Nasir ◽  
Khairul Amri ◽  
Rahmadi Tambaru ◽  
Muhammad Hatta ◽  
...  

<p><strong><em>ABSTRACT</em></strong></p> <p><em>Dissolved silicate (DSi) in coastal waters plays a crucial role in phytoplankton</em><em> </em><em>growth particularly diatom</em><em>.</em><em> This study aimed to </em><em>determine</em><em> DSi</em><em> </em><em> concentration </em><em>seasonally </em><em>in waters of the western coast of South Sulawesi in relation to coastal water quality</em><em> indicator. Water, c</em><em>hlorophyll-a</em><em>,</em><em> and diatom samples were collected </em><em>from</em><em> the coastal areas of the Tallo-Makassar, Maros, and Pangkep, in April 2013 (transitional season), June 2013 (dry season), and February 2014 (wet season). Factorial analysis of variance was used to identify significant seasonal and temporal variations, and linear regression was used to test the relationship of chlorophyll-a and diatom abundance to DSi concentrations. The results showed that the DSi concentration was higher in the wet season </em><em>of</em><em> 35.2</em><em>-</em><em>85.2 µM than in the other seasons (transitional season: 10.8</em><em>-</em><em>68.4 µM, dry season: 9.59</em><em>-</em><em>24.1 µM). The abundance of diatoms during the transitional season reached ~9.7x10<sup>7</sup> cell/m<sup>3</sup> in the Pangkep river, 2.3x10<sup>7</sup> cell/m<sup>3</sup> in the Tallo river, and 1.3 x 10<sup>7</sup> cell/m<sup>3</sup> in the Maros river. <span style="text-decoration: underline;">Chaetoceros,</span> <span style="text-decoration: underline;">Nitzschia</span>, and <span style="text-decoration: underline;">Rhizosolenia </span>dominated the diatom composition. The mean concentration of chlorophyll-a in the Makassar coastal waters was 4.52±4.66 mg/m<sup>3</sup></em><em>, </em><em>while in the Maros </em><em>and Pangkep </em><em>waters </em><em>of</em><em> 1.40±1.06</em><em>, and </em><em>2.72±1.94  mg/m<sup>3</sup>,</em><em> respectively.</em><em> There was no strong linear corelation between DSi and diatom abundances, nor chlorophyll-a. These results suggest</em><em>ed</em><em> that DSi become a non-limiting factor for the </em><em>diatom </em><em>growth </em><em>and potentially reduce the water quality via</em><em> eutrophication and diatom blooms. </em></p> <p><strong> </strong></p> <strong><em>Keywords: </em></strong><em>dissolved silicate, diatom, chlorophyll-a, coastal waters, South Sulawesi</em>


1991 ◽  
Vol 23 (1-3) ◽  
pp. 121-131 ◽  
Author(s):  
Wang Chongxiao ◽  
Cai Jie ◽  
Zhou Jiaxin ◽  
Xu Sailan ◽  
Yu Yiping ◽  
...  

It nas been proved that planting various aquatic vascular plants with proper arrangements of time and space in tne eutropnic water of tne Cao Yang Round Creek nas formed an effective and stable ecological system for purifying water. Within two years, the water quality of the Round Creek has been improved significantly. The density of algae (content of chlorophyll a) has dropped by 95%, the total suspended solids is decreased by more tnan 90%, and COD is also reduced by 50%. The transparency of the water has increased from 15cm Before treatment to 53cm after treatment. Some parts of tne Creek are clear enough to see the bottom, to count tne fish. At the same time, beautification and planting of plants on the water surface has been carried our, together with the purification of the water. In this way, tne sightseeing value of water body is also increased. The paper intends to probe an efficient way of harnessing the eutropnic water By practicing witn purification, Deautification and plant planting all at one time.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 375
Author(s):  
Cheng He ◽  
Youru Yao ◽  
Xiaoman Lu ◽  
Mingnan Chen ◽  
Weichun Ma ◽  
...  

In estuary areas, meteorological conditions have become unstable under the continuous effects of climate change, and the ecological backgrounds of such areas have strongly been influenced by anthropic activities. Consequently, the water quality of these areas is obviously affected. In this research, we identified periods of fluctuation of the general meteorological conditions in the Yangtze River Estuary using a wavelet analysis. Additionally, we performed a spatiotemporal evaluation of the water quality in the fluctuating period by using remote sensing modeling. Then, we explored how the fluctuating meteorological factors affect the distribution of total suspended solids (TSS) and chlorophyll-a (Chla) concentration. (1) The results show that from 2000 to 2015, temperature did not present significant fluctuations, while wind speed (WS) and precipitation (PR) presented the same fluctuation period from January 2012 to December 2012. (2) Based on the measured water sample data associated with Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, we developed a water quality algorithm and depicted the TSS and Chla concentrations within the WS and PR fluctuating period. (3) We found that the TSS concentration decreased with distance from the shore, while the Chla concentration showed an initially decreasing trend followed by an increasing trend; moreover, these two water quality parameters presented different inter-annual variations. Then, we discussed the correlation between the changes in the TSS and Chla concentrations and the WS and PR variables. The contribution of this research is reflected in two aspects: 1. variations in water quality parameters over a wide range of water bodies can be evaluated based on MODIS data; 2. data from different time periods showed that the fluctuations of meteorological elements had different impacts on water bodies based on the distance from the shore. The results provide new insights for the management of estuary water environments.


Sign in / Sign up

Export Citation Format

Share Document