scholarly journals Three-dimensional Groundwater Flow Analysis using a Geological Structural Model of a Large-scale Landslide

2005 ◽  
Vol 45 (6) ◽  
pp. 304-315 ◽  
Author(s):  
Shiho ASANO ◽  
Sumio MATSUURA ◽  
Takashi OKAMOTO
Author(s):  
Mrinalgouda Patil ◽  
Anubhav Datta

A time-parallel algorithm is developed for large-scale three-dimensional rotor dynamic analysis. A modified harmonic balance method with a scalable skyline solver forms the kernel of this algorithm. The algorithm is equipped with a solution procedure suitable for large-scale structures that have lightly damped modes near resonance. The algorithm is integrated in X3D, implemented on a hybrid shared and distributed memory architecture, and demonstrated on a three-dimensional structural model of a UH-60A-like fully articulated rotor. Flight-test data from UH-60A Airloads Program transition flight C8513 are used for validation. The key conclusion is that the new solver converges to the time marching solution more than 50 times faster and achieves a performance greater than 1 teraFLOPS. The significance of this conclusion is that the principal barrier of computational time for trim solution using high-fidelity three-dimensional structures can be overcome with the scalable harmonic balance method demonstrated in this paper.


Author(s):  
Sanaz Yazdanparast ◽  
Mohsen Asle Zaeem ◽  
Iraj Rajabi

In this paper, global welding buckling distortion of a thin wall aluminum butt joint is investigated. To determine longitudinal residual stresses, a thermo-elastoplastic model is employed; analysis of thermal model and elastic-viscoplastic (Anand) model are decoupled. By using birth and death element method and time dependent model, molten puddle motion (speed of welding) is modeled. Three dimensional nonlinear-transient heat flow analysis has been used to obtain temperature distribution. By applying thermal results and using three dimensional Anand elastic-viscoplastic model, stress and deformation distributions are obtained. Residual stresses are applied on a structural model and by using eigenvalue methods, global buckling instability of butt welded joint is determined. The result of buckling investigation in the numerical model is compared with the result of an experiment.


2014 ◽  
Vol 70 (11) ◽  
pp. 2781-2793 ◽  
Author(s):  
Marcin J. Mizianty ◽  
Xiao Fan ◽  
Jing Yan ◽  
Eric Chalmers ◽  
Christopher Woloschuk ◽  
...  

Structural genomics programs have developed and applied structure-determination pipelines to a wide range of protein targets, facilitating the visualization of macromolecular interactions and the understanding of their molecular and biochemical functions. The fundamental question of whether three-dimensional structures of all proteins and all functional annotations can be determined using X-ray crystallography is investigated. A first-of-its-kind large-scale analysis of crystallization propensity for all proteins encoded in 1953 fully sequenced genomes was performed. It is shown that current X-ray crystallographic knowhow combined with homology modeling can provide structures for 25% of modeling families (protein clusters for which structural models can be obtained through homology modeling), with at least one structural model produced for each Gene Ontology functional annotation. The coverage varies between superkingdoms, with 19% for eukaryotes, 35% for bacteria and 49% for archaea, and with those of viruses following the coverage values of their hosts. It is shown that the crystallization propensities of proteomes from the taxonomic superkingdoms are distinct. The use of knowledge-based target selection is shown to substantially increase the ability to produce X-ray structures. It is demonstrated that the human proteome has one of the highest attainable coverage values among eukaryotes, and GPCR membrane proteins suitable for X-ray structure determination were determined.


Sign in / Sign up

Export Citation Format

Share Document