scholarly journals Scientific Visualization System on a Chip with Tangible User Interface

2020 ◽  
pp. short54-1-short54-8
Author(s):  
Konstantin Ryabinin ◽  
Mariia Kolesnik

This paper is devoted to the development of the ontology-driven standalone scientific visualization station based on a single-board microcomputer with custom tangible user interface. Such a station can be used as a powerful demonstration tool in various scenarios including interactive museum exhibitions. According to the approach proposed, the particular instance of a software scientific visualization system is generated automatically by a high-level platform SciVi that was been developed earlier. Previously, ontology-driven software generation mechanisms within SciVi were tested on the firmware generation for the microcontroller units. Currently we present a generalization of this technique to the case of systems on chips like Raspberry Pi or Orange Pi. Data preprocessing and rendering capabilities of SciVi are reused without modifications from the previous stages of development, while the new mechanisms of taking into account the specifics of systems on chips software and hardware organization are introduced via extending the appropriate SciVi ontologies. The generalized technique is tested in practice by creating a set of interactive museum items for the “Transmutations” exhibition within Kidsmuseum, branch of Perm Regional Museum.

Ergodesign ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 19-24
Author(s):  
Igor Pestov ◽  
Polina Shinkareva ◽  
Sofia Kosheleva ◽  
Maxim Burmistrov

This article aims to develop a hardware-software system for access control and management based on the hardware platforms Arduino Uno and Raspberry Pi. The developed software and hardware system is designed to collect data and store them in the database. The presented complex can be carried and used anywhere, which explains its high mobility.


2021 ◽  
Vol 7 (1) ◽  
pp. 43-48
Author(s):  
Agung Raharjo ◽  
Eko Kuncoro ◽  
Imam Azhar

Seiring dengan perkembangan teknologi komunikasi dan otomasi, pelaksanaan tugas militer dapat dibantu dengan mengembangkan alutsista militer. Salah satunya pengembangan robot tempur yang akan digunakan sebagai alat untuk membantu tugas operasi jarak jauh pada satuan tempur TNI AD. Pada robot tempur tersebut akan ditanamkan sistem komunikasi data berupa perintah kendali laju robot, perintah kendali senjata serang, dan sistem visualisasi yang dapat digunakan untuk mendukung pergerakan robot hingga mencapai sasaran yang ditentukan, serta sebagai sistem penginderaan jarak jauh robot tempur untuk memonitor area musuh yang akan ditinjau. Operator menggunakan sebuah joystick untuk mengendalikan robot tempur dan tablet Android untuk memantau dan mendeteksi arah sasaran. Penelitian ini membahas tentang perancangan pendeteksian sasaran tembak yang dapat dikendalikan dari jarak jauh. Metode yang digunakan adalah metode eksperimen berbasis PID. Penelitian ini berfokus pada pendeteksian sasaran tembak yang nantinya akan terhubung dengan Raspberry Pi 3, sehingga senjata dapat mendeteksi adanya sasaran tembak yang ada di dalam jangkauan sensor posisi. Hasil dari penelitian menunjukkan bahwa robot dapat dikendalikan dengan mudah menggunakan joystick dan secara real-time terlihat pada layar Android yang terpasang pada kontrol joystick tersebut. Selain itu, sistem juga dapat membedakan antara sasaran tembak dan objek yang bukan sasaran tembak. Penelitian ini diharapkan dapat mendukung tugas operasi personel TNI dalam menjalankan misinya dengan memanfaatkan robot tempur. Along with the development of communication and automation technology, the implementation of military duties can be assisted by developing military defense equipment. One of them is the development of a combat robot that will be used as a tool to assist the task of long-distance operations on the Army combat unit. In the combat robot, a data communication system will be implanted in the form of a robot rate control command, an attack weapon control command, and a visualization system that is used to support the robot's movement to reach the target specified as a combat robot's remote sensing system for monitoring enemy areas to be reviewed. The operator has used a joystick to control the combat robot and to detect the direction of the target can be monitored with an android tablet. This research discusses the design of the detection of target fire that can be controlled remotely. The method used is experimental based on PID. This research focused on detecting firing targets that will be connected with Raspberry Pi 3 so that the weapon can detect the presence of firing targets within the position sensor. The results of the research show that the robot can be easily controlled using a Joystick and in real-time visible on the Android screen mounted on the Joystick control, the system can distinguish between target shooting and non-target objects. This research is expected to support the operational duties of army personnel in carrying out their missions by utilizing combat robots.


2021 ◽  
Author(s):  
B. L. McGee ◽  
Lisa Jacka

Virtual reality in one form or another has been around for over 50 years, most notably in entertainment and business environments. Technology-focused teachers have been leading the way with attempts at utilising and integrating virtual reality into K-12 and Higher Education. However, as quickly as technology changes so does the enthusiasm for the use in educational contexts. Much of this is due to the high-level cost (time and money) with no evidence-based educational return. In 2020 the global pandemic forced the education sector to innovate to provide authentic learning environments for students. The time is right for virtual reality to take centre stage. Over 171 million people worldwide currently use virtual reality, and the market in education is expected to grow by 42% over the next five years. This paper focuses on a range of virtual reality literature encompassing work across the spectrum of software and hardware, identifying where more educational implementation and research needs to be done and providing a perspective on future possibilities focusing on current affordances.


Author(s):  
Yuichi Bannai ◽  
Hidekazu Tamaki ◽  
Yuji Suzuki ◽  
Hiroshi Shigeno ◽  
Kenichi Okada

Sign in / Sign up

Export Citation Format

Share Document