Relationships between rating of perceived exertion, heart rate and blood lactate during continuous and alternated-intensity cycling exercises

Author(s):  
Badrane Zinoubi ◽  
Sana Zbidi ◽  
Henry Vandewalle ◽  
Karim Chamari ◽  
Tarak Driss
2007 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Thomas Zochowski ◽  
Elizabeth Johnson ◽  
Gordon G. Sleivert

Context:Warm-up before athletic competition might enhance performance by affecting various physiological parameters. There are few quantitative data available on physiological responses to the warm-up, and the data that have been reported are inconclusive. Similarly, it has been suggested that varying the recovery period after a standardized warm-up might affect subsequent performance.Purpose:To determine the effects of varying post-warm-up recovery time on a subsequent 200-m swimming time trial.Methods:Ten national-caliber swimmers (5 male, 5 female) each swam a 1500-m warm-up and performed a 200-m time trial of their specialty stroke after either 10 or 45 min of passive recovery. Subjects completed 1 time trial in each condition separated by 1 wk in a counterbalanced order. Blood lactate and heart rate were measured immediately after warm-up and 3 min before, immediately after, and 3 min after the time trial. Rating of perceived exertion was measured immediately after the warm-up and time trial.Results:Time-trial performance was significantly improved after 10 min as opposed to 45 min recovery (136.80 ± 20.38 s vs 138.69 ± 20.32 s, P < .05). There were no significant differences between conditions for heart rate and blood lactate after the warm-up. Pre-time-trial heart rate, however, was higher in the 10-min than in the 45-min rest condition (109 ± 14 beats/min vs 94 ± 21 beats/min, P < .05).Conclusions:A post-warm-up recovery time of 10 min rather than 45 min is more beneficial to 200-m swimming time-trial performance.


2018 ◽  
Vol 13 (9) ◽  
pp. 1215-1222 ◽  
Author(s):  
Theo Ouvrard ◽  
Alain Groslambert ◽  
Gilles Ravier ◽  
Sidney Grosprêtre ◽  
Philippe Gimenez ◽  
...  

Purpose: To identify the impact of a leading teammate in front of a cyclist on psychological, physiological, biomechanical, and performance parameters during an uphill maximal effort. Methods: After familiarization, 12 well-trained competitive cyclists completed 2 uphill time trials (UTTs, 2.7 km at 7.4%) in randomized order; that is, 1 performed alone (control condition) and 1 followed a simulated teammate during the entire UTT (leader condition). Performance (UTT time) and mean power output (PO) were recorded for each UTT. For physiological parameters, mean heart rate and postexercise blood lactate concentration were recorded. Psychological parameters (rating of perceived exertion, pleasure, and attentional focus) were collected at the end of each trial. Results: Performance (UTT time) significantly improved by 4.2% (3.1%) in the leader condition, mainly due to drafting decrease of the aerodynamic drag (58% of total performance gains) and higher end spurt (+9.1% [9.1%] of mean PO in the last 10% of the UTT). However, heart rate and postexercise blood lactate concentration were not significantly different between conditions. From a psychological aspect, higher pleasure was observed in the leader condition (+41.1% [51.7%]), but attentional focus was not significantly different. Conclusions: The presence of a leading teammate during uphill cycling had a strong impact on performance, enabling higher speed for the same mean PO and greater end spurt. These results explain why the best teams competing for the general classification of the most prestigious and contested races like the Grand Tours tend to always protect their leader with teammates during decisive ascents.


1996 ◽  
Vol 8 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Glen E. Duncan ◽  
Anthony D. Mahon ◽  
Julie A. Gay ◽  
Jennifer J. Sherwood

Physiological and perceptual responses at ventilatory threshold (VT) and V̇O2 peak were examined in 10 male children (10.2 ± 1.3 yrs) during graded treadmill and cycle exercise. Treadmill V̇O2peak (57.9 ± 6.7 ml · kg−1 · min−1) was higher (p < .05) than the cycle (51.7 ± 7.7 ml · kg−1 · min−1). Ventilation and heart rate (HR) were higher (p < .05) on the treadmill, while respiratory exchange ratio (RER), rating of perceived exertion (RPE), capillary blood lactate, and test duration were similar between tests. The V̇O2 at VT was higher (p < .05) on the treadmill (36.7 ± 4.6 ml · kg−1 · min−1) than the cycle (32.5 ± 4.4 ml · kg−1 · min−1). When VT was expressed as a percentage of V̇O2 peak, there was no difference (p > .05) between tests. The RPE at VT, HR at VT, and VT expressed as a percentage of HRpeak were also similar (p > .05) between tests. Similar to V̇O2 peak, the V̇O2 at VT is dependent on the mode of exercise. However, when VT is expressed as a percentage of V̇O2 peak, it is independent of testing modality. The RPE at VT appears to be linked to a percentage of V̇O2 peak rather than an absolute V̇O2.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 586
Author(s):  
Ronam Toledo ◽  
Marcelo R. Dias ◽  
Ramon Toledo ◽  
Renato Erotides ◽  
Daniel S. Pinto ◽  
...  

The purpose of the present study was to compare the heart rate (HR), blood lactate and training load between different CrossFit® workouts, with equalized total work volumes in men and women. The study included 23 individuals (13 men and 10 women) experienced in CrossFit® training, who performed two workouts with different training types (as many reps as possible (AMRAP) and ‘for time’) but an equalized volume. Measurements of lactate, HR and rating of perceived exertion (RPE) were performed. The results show that there was no HR interaction between workout time and sex (p = 0.822; η2 = 0.006) and between workout type and sex (p = 0.064, η2 = 0.803). The HR significantly differed during each workout type (p < 0.001, η2 = 0.621), but not between the two workout types (p = 0.552, η2 = 0.017). Lactate showed no difference between the workout types (p = 0.474, η2 = 0.768), although the training load was higher (p = 0.033, η2 = 0.199) in women when they performed AMRAP. Altogether, the HR was not significantly different between training types or sex, while RPE, lactate and training load showed statistically significant differences depending on the group (women or men) or workout type (AMRAP or ‘for time’).


2021 ◽  
Vol 6 (2) ◽  
pp. 44
Author(s):  
Stefano Benítez-Flores ◽  
Carlos A. Magallanes ◽  
Cristine Lima Alberton ◽  
Todd A. Astorino

The aim of this study was to compare the acute responses to three time-matched exercise regimens. Ten trained adults (age, maximum oxygen consumption (VO2max), and body mass index (BMI) = 25.9 ± 5.6 yr, 50.9 ± 5.4 mL·kg−1·min−1, and 22.1 ± 1.8 kg·m−2) completed sprint interval training (SIT) requiring 14 × 5 s efforts with 35 s of recovery, high-intensity interval training (HIIT) consisting of 18 × 15 s efforts at ~90% of peak heart rate (HRpeak) with 15 s of recovery, and vigorous continuous training (CT) consisting of 8.75 min at ~85 %HRpeak, in randomized order. Heart rate, blood lactate concentration, rating of perceived exertion, affective valence, and enjoyment were monitored. Moreover, indices of neuromuscular function, autonomic balance, diet, mental stress, incidental physical activity (PA), and sleep were measured 24 h after each session to analyze the magnitude of recovery. Both HIIT and CT exhibited a greater %HRpeak and time ≥ 90 %HRpeak than SIT (p < 0.05). Blood lactate and rating of perceived exertion were higher in response to SIT and HIIT vs. CT (p < 0.05); however, there were no differences in enjoyment (p > 0.05). No differences were exhibited in any variable assessed along 24 h post-exercise between conditions (p > 0.05). These data suggest that HIIT and CT accumulate the longest duration at near maximal intensities, which is considered a key factor to enhance VO2max.


2015 ◽  
Vol 40 (3) ◽  
pp. 269-273 ◽  
Author(s):  
Vicente Javier Clemente-Suárez

Many studies have researched the psychophysiological response and energy balance of athletes in numerous ultraendurance probes, but none has investigated an ultraendurance mountain running event. The current study aims to analyze changes in blood lactate concentration, rating of perceived exertion, heart rate, heart rate variability, and energy balance after the performance of an ultraendurance mountain running event. The parameters in the 6 participants who finished the event were analyzed (age, 30.8 ± 3.1 years; height, 176.2 ± 8.6 cm; body mass, 69.2 ± 3.7 kg). The race covered 54 km, with 6441 m of altitude change, 3556 m downhill and 2885 m uphill. The athletes completed together the race in 14 h and 6 min. After the ultraendurance event, the athletes presented a negative energy balance of 4732 kcal, a blood lactate concentration of 2.8 ± 0.3 mmol/L, a heart rate mean/heart rate maximum ratio of 0.64, a heart rate mean of 111.4 ± 5.9 beats/min, a decrease in vagal modulation, and an increase in sympathetic modulation, and recorded 19.5 ± 1.5 points on the 6–20 rating of perceived exertion scale. The event was a stressful stimulus for the athletes despite the low intensity measured by blood lactate concentration and heart rate. The results obtained may be used by coaches as a reference parameter of heart rate, heart rate variability, rating of perceived exertion, and lactate concentration to develop specific training programs. In addition, the energy balance data obtained in this research may improve nutritional intake strategies.


Sign in / Sign up

Export Citation Format

Share Document