Cluster-Head Selection on Link Quality Routing Protocol for Wireless Sensor Network

2013 ◽  
Vol 69 (27) ◽  
pp. 22-26
Author(s):  
Sitender Kumar ◽  
Arvind Kumar ◽  
Rohit Kumar Vishwkarma
2021 ◽  
Author(s):  
Ramdas Vankdothu ◽  
Hameed Mohd Abdul

Abstract This paper provides an effective Wireless Sensor Network(WSN) routing solution for Internet of Things(IoT) applications cognizant of congestion, security, and interference. Because several sources try to deliver their packets to a destination simultaneously, which is a common case in IoT applications. The proposed congestion and interference aware safe routing protocol is claimed to work in networks with high traffic. The signal to interference ratio (SINR), congestion level, and survival factor is used in our suggested procedure to estimate the cluster head selection factor first. The adaptive fuzzy c-means clustering method clusters the network nodes based on the cluster head selection factor. After that, data packets are encrypted using Adaptive Quantum Logic-based packet coding. Finally, the Adaptive Krill Herd (AKH) optimization method identifies the least congested corridor, resulting in optimal data transmission routing. The exploratory findings show that the provided strategy outperforms previous methodologies in network performance, end-to-end delay, packet delivery ratio, and node remaining energy level.


Author(s):  
Shruti Birur Viswanath ◽  
Thippeswamy Muddenahalli Nagendrappa ◽  
Krishna Rao Venkatesh

The exponential rise in wireless technologies and allied applications has revitalized academia-industries to develop more efficient and economic routing solution to meet Quality-of-Service (QoS) provision. Amongst the major wireless communication systems, Wireless Sensor Network (WSN) is the most sought technology for defense surveillance, healthcare monitoring, industrial monitoring and control, civic and strategic infrastructure surveillance etc. Additionally, the up surge in Internet of Things (IoT) and Machine to Machine (M2M) communication systems too have broadened the horizon for WSNs based communication. However, the parallel increase in communication environment, complex network conditions etc confine efficacy of the classical WSN protocols. Dynamic network and node conditions often force classical protocols to undergo pre-mature link outage, delayed transmission, energy exhaustion and eventual QoS violation. To address such issues enhancing Median Access Control (MAC) and allied routing decision can have vital significance. However major existing efforts either focus on MAC enhancement or routing optimization, even under static WSN topology. Considering it as motive in this paper a highly robust “Cross-layer architecture based Joint-Synchronous MAC and Routing Protocol for WSN communication (JSMCRP)” has been developed. Being cross layer model JSMCRP protocol employs Application Layer, Network Layer, MAC Layer and PHY Layer to perform Network Adaptive MAC scheduling and Dynamic Routing Decision. JSMCRP employs Data Traffic Assessment, Prioritization and Scheduling (DTAPS), Proactive Network Monitoring and Knowledge (PNMK), Dynamic Congestion Index Estimation (DCIE), Adaptive Link Quality, Packet Injection Rate and Cumulative Rank Sensitive Routing Decision (CRSRD) to perform routing decision. Additionally, exploiting dynamic network/node conditions it performs Cognitive MAC scheduling to ensure QoS centric communication over IEEE 802.15.4 protocol stack. JSMCRP exhibited higher PDR, lower PLR and low delay under varying network conditions, suitable for real-time communication over constrained mobile WSN conditions.


Sign in / Sign up

Export Citation Format

Share Document