scholarly journals Adaptive PI Controllers for Doubly Fed Induction Generator using B-spline Artificial Neural Networks

2013 ◽  
Vol 80 (16) ◽  
pp. 37-42 ◽  
Author(s):  
Rubén Tapia-O. ◽  
Omar Aguilar M. ◽  
Abel García-B. ◽  
Omar J. Santos-S.
2019 ◽  
Vol 24 (3) ◽  
pp. 77 ◽  
Author(s):  
Alhato ◽  
Bouallègue

This study presents an intelligent metaheuristics-based design procedure for the Proportional-Integral (PI) controllers tuning in the direct power control scheme for 1.5 MW Doubly Fed Induction Generator (DFIG) based Wind Turbine (WT) systems. The PI controllers’ gains tuning is formulated as a constrained optimization problem under nonlinear and non-smooth operational constraints. Such a formulated tuning problem is efficiently solved by means of the proposed Thermal Exchange Optimization (TEO) algorithm. To evaluate the effectiveness of the introduced TEO metaheuristic, an empirical comparison study with the homologous particle swarm optimization, genetic algorithm, harmony search algorithm, water cycle algorithm, and grasshopper optimization algorithm is achieved. The proposed TEO algorithm is ensured to perform several desired operational characteristics of DFIG for the active/reactive power and DC-link voltage simultaneously. This is performed by solving a multi‐objective function optimization problem through a weighted‐sum approach. The proposed control strategy is investigated in MATLAB/environment and the results proved the capabilities of the proposed control system in tracking and control under different scenarios. Moreover, a statistical analysis using non-parametric Friedman and Bonferroni–Dunn’s tests demonstrates that the TEO algorithm gives very competitive results in solving global optimization problems in comparison to the other reported metaheuristic algorithms.


Vehicles ◽  
2020 ◽  
Vol 2 (3) ◽  
pp. 468-490
Author(s):  
Hugo Yañez-Badillo ◽  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal

Unmanned Aerial Vehicles have generated considerable interest in different research fields. The motion control problem is among the most important issues to be solved since system dynamic stability depends on the robustness of the main controller against endogenous and exogenous disturbances. In spite of different controllers have been introduced in the literature for motion control of fixed and rotary wing vehicles, there are some challenges for improving controller features such as simplicity, robustness, efficiency, adaptability, and stability. This paper outlines a novel approach to deal with the induced effects of external disturbances affecting the flight of a quadrotor unmanned aerial vehicle. The aim of our study is to further extend the current knowledge of quadrotor motion control by using both adaptive and robust control strategies. A new adaptive neural trajectory tracking control strategy based on B-spline artificial neural networks and on-line disturbance estimation for a quadrotor is proposed. A linear extended state observer is used for estimating time-varying disturbances affecting the controlled nonlinear system dynamics. B-spline artificial neural networks are properly synthesized for on-line calculating control gains of an adaptive Proportional Integral Derivative (PID) scheme. Simulation results highlight the implementation of such a controller is able to reject disturbances meanwhile perform proper motion control by exploiting the robustness, disturbance rejection, adaptability, and self-learning capabilities.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2367
Author(s):  
Hugo Yañez-Badillo ◽  
Francisco Beltran-Carbajal ◽  
Ruben Tapia-Olvera ◽  
Antonio Favela-Contreras ◽  
Carlos Sotelo ◽  
...  

Most of the mechanical dynamic systems are subjected to parametric uncertainty, unmodeled dynamics, and undesired external vibrating disturbances while are motion controlled. In this regard, new adaptive and robust, advanced control theories have been developed to efficiently regulate the motion trajectories of these dynamic systems while dealing with several kinds of variable disturbances. In this work, a novel adaptive robust neural control design approach for efficient motion trajectory tracking control tasks for a considerably disturbed non-linear under-actuated quadrotor system is introduced. Self-adaptive disturbance signal modeling based on Taylor-series expansions to handle dynamic uncertainty is adopted. Dynamic compensators of planned motion tracking errors are then used for designing a baseline controller with adaptive capabilities provided by three layers B-spline artificial neural networks (Bs-ANN). In the presented adaptive robust control scheme, measurements of position signals are only required. Moreover, real-time accurate estimation of time-varying disturbances and time derivatives of error signals are unnecessary. Integral reconstructors of velocity error signals are properly integrated in the output error signal feedback control scheme. In addition, the appropriate combination of several mathematical tools, such as particle swarm optimization (PSO), Bézier polynomials, artificial neural networks, and Taylor-series expansions, are advantageously exploited in the proposed control design perspective. In this fashion, the present contribution introduces a new adaptive desired motion tracking control solution based on B-spline neural networks, along with dynamic tracking error compensators for quadrotor non-linear systems. Several numeric experiments were performed to assess and highlight the effectiveness of the adaptive robust motion tracking control for a quadrotor unmanned aerial vehicle while subjected to undesired vibrating disturbances. Experiments include important scenarios that commonly face the quadrotors as path and trajectory tracking, take-off and landing, variations of the quadrotor nominal mass and basic navigation. Obtained results evidence a satisfactory quadrotor motion control while acceptable attenuation levels of vibrating disturbances are exhibited.


2017 ◽  
Vol 28 (2) ◽  
pp. 228-237 ◽  
Author(s):  
Marcelo Patrício de Santana ◽  
José Roberto Boffino de Almeida Monteiro ◽  
Fabbio Anderson Silva Borges ◽  
Geyverson Teixeira de Paula ◽  
Thales Eugênio Portes de Almeida ◽  
...  

Author(s):  
Saher Albatran ◽  
Muwaffaq I. Alomoush ◽  
Ahmed M. Koran

Recently, the Gravitational-Search Algorithm (GSA) has been presented as a promising physics-inspired stochastic global optimization technique. It takes its derivation and features from laws of gravitation. This paper applies the GSA to design optimal controllers of a nonlinear system consisting of a doubly-fed induction generator (DFIG) driven by a wind turbine. Both the active and the reactive power are controlled and processed through a back-to-back converter. The active power control loop consists of two cascaded proportional integral (PI) controllers. Another PI controller is used to set the q-component of the rotor voltage by compensating the generated reactive power. The GSA is used to simultaneously tune the parameters of the three PI controllers. A time-weighted absolute error (ITAE) is used in the objective function to stabilize the system and increase its damping when subjected to different disturbances. Simulation results will demonstrate that the optimal GSA-based coordinated controllers can efficiently damp system oscillations under severe disturbances. Moreover, simulation results will show that the designed optimal controllers obtained using the GSA perform better than the optimal controllers obtained using two commonly used global optimization techniques, which are the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).


Sign in / Sign up

Export Citation Format

Share Document