scholarly journals Adaptive Robust Motion Control of Quadrotor Systems Using Artificial Neural Networks and Particle Swarm Optimization

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2367
Author(s):  
Hugo Yañez-Badillo ◽  
Francisco Beltran-Carbajal ◽  
Ruben Tapia-Olvera ◽  
Antonio Favela-Contreras ◽  
Carlos Sotelo ◽  
...  

Most of the mechanical dynamic systems are subjected to parametric uncertainty, unmodeled dynamics, and undesired external vibrating disturbances while are motion controlled. In this regard, new adaptive and robust, advanced control theories have been developed to efficiently regulate the motion trajectories of these dynamic systems while dealing with several kinds of variable disturbances. In this work, a novel adaptive robust neural control design approach for efficient motion trajectory tracking control tasks for a considerably disturbed non-linear under-actuated quadrotor system is introduced. Self-adaptive disturbance signal modeling based on Taylor-series expansions to handle dynamic uncertainty is adopted. Dynamic compensators of planned motion tracking errors are then used for designing a baseline controller with adaptive capabilities provided by three layers B-spline artificial neural networks (Bs-ANN). In the presented adaptive robust control scheme, measurements of position signals are only required. Moreover, real-time accurate estimation of time-varying disturbances and time derivatives of error signals are unnecessary. Integral reconstructors of velocity error signals are properly integrated in the output error signal feedback control scheme. In addition, the appropriate combination of several mathematical tools, such as particle swarm optimization (PSO), Bézier polynomials, artificial neural networks, and Taylor-series expansions, are advantageously exploited in the proposed control design perspective. In this fashion, the present contribution introduces a new adaptive desired motion tracking control solution based on B-spline neural networks, along with dynamic tracking error compensators for quadrotor non-linear systems. Several numeric experiments were performed to assess and highlight the effectiveness of the adaptive robust motion tracking control for a quadrotor unmanned aerial vehicle while subjected to undesired vibrating disturbances. Experiments include important scenarios that commonly face the quadrotors as path and trajectory tracking, take-off and landing, variations of the quadrotor nominal mass and basic navigation. Obtained results evidence a satisfactory quadrotor motion control while acceptable attenuation levels of vibrating disturbances are exhibited.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mehmet Hacibeyoglu ◽  
Mohammed H. Ibrahim

Multilayer feed-forward artificial neural networks are one of the most frequently used data mining methods for classification, recognition, and prediction problems. The classification accuracy of a multilayer feed-forward artificial neural networks is proportional to training. A well-trained multilayer feed-forward artificial neural networks can predict the class value of an unseen sample correctly if provided with the optimum weights. Determining the optimum weights is a nonlinear continuous optimization problem that can be solved with metaheuristic algorithms. In this paper, we propose a novel multimean particle swarm optimization algorithm for multilayer feed-forward artificial neural networks training. The proposed multimean particle swarm optimization algorithm searches the solution space more efficiently with multiple swarms and finds better solutions than particle swarm optimization. To evaluate the performance of the proposed multimean particle swarm optimization algorithm, experiments are conducted on ten benchmark datasets from the UCI repository and the obtained results are compared to the results of particle swarm optimization and other previous research in the literature. The analysis of the results demonstrated that the proposed multimean particle swarm optimization algorithm performed well and it can be adopted as a novel algorithm for multilayer feed-forward artificial neural networks training.


Fuel ◽  
2020 ◽  
Vol 267 ◽  
pp. 117221 ◽  
Author(s):  
Diego Galvan ◽  
Hágata Cremasco ◽  
Ana Carolina Gomes Mantovani ◽  
Evandro Bona ◽  
Mário Killner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document