scholarly journals A coevolutionary framework based on temporal and spatial ecology of host-parasite interactions: A missing link in studies of brood parasitism

Chinese Birds ◽  
2012 ◽  
Vol 3 (4) ◽  
pp. 259-273 ◽  
Author(s):  
Anders P. MOLLER ◽  
Juan J. SOLER
2015 ◽  
Vol 370 (1675) ◽  
pp. 20140297 ◽  
Author(s):  
Britt Koskella ◽  
Nicole Parr

Insight to the spatial and temporal scales of coevolution is key to predicting the outcome of host–parasite interactions and spread of disease. For bacteria infecting long-lived hosts, selection to overcome host defences is just one factor shaping the course of evolution; populations will also be competing with other microbial species and will themselves be facing infection by bacteriophage viruses. Here, we examine the temporal and spatial patterns of bacterial adaptation against natural phage populations from within leaves of horse chestnut trees. Using a time-shift experiment with both sympatric and allopatric phages from either contemporary or earlier points in the season, we demonstrate that bacterial resistance is higher against phages from the past, regardless of spatial sympatry or how much earlier in the season phages were collected. Similarly, we show that future bacterial hosts are more resistant to both sympatric and allopatric phages than contemporary bacterial hosts. Together, our results suggest the evolution of relatively general bacterial resistance against phages in nature and are contrasting to previously observed patterns of phage adaptation to bacteria from the same tree hosts over the same time frame, indicating a potential asymmetry in coevolutionary dynamics.


2011 ◽  
Vol 41 (9) ◽  
pp. 925-933 ◽  
Author(s):  
James A. Cotton ◽  
Jennifer K. Beatty ◽  
Andre G. Buret

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lenka Ulrychová ◽  
Pavel Ostašov ◽  
Marta Chanová ◽  
Michael Mareš ◽  
Martin Horn ◽  
...  

Abstract Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract


2021 ◽  
Vol 10 (2) ◽  
pp. 205
Author(s):  
Lúcio Lara Santos ◽  
Júlio Santos ◽  
Maria João Gouveia ◽  
Carina Bernardo ◽  
Carlos Lopes ◽  
...  

Schistosomiasis is the most important helminthiasis worldwide in terms of morbidity and mortality. Most of the infections occurs in Africa, which about two thirds are caused by Schistosoma haematobium. The infection with S. haematobium is considered carcinogenic leading to squamous cell carcinoma (SCC) and urothelial carcinoma of the urinary bladder. Additionally, it is responsible for female genital schistosomiasis leading to infertility and higher risk of human immunodeficiency virus (HIV) transmission. Remarkably, a recent outbreak in Corsica (France) drew attention to its potential re-mergence in Southern Europe. Thus far, little is known related to host-parasite interactions that trigger carcinogenesis. However, recent studies have opened new avenues to understand mechanisms on how the parasite infection can lead cancer and other associated pathologies. Here, we present a historical perspective of schistosomiasis, and review the infection-associated pathologies and studies on host–parasite interactions that unveil tentative mechanisms underlying schistosomiasis-associated carcinogenesis.


2021 ◽  
Vol 37 (5) ◽  
pp. 445-455
Author(s):  
Rogini Runghen ◽  
Robert Poulin ◽  
Clara Monlleó-Borrull ◽  
Cristina Llopis-Belenguer

2009 ◽  
Vol 11 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Kristle Krichbaum ◽  
Sarah Perkins ◽  
Michael R. Gannon

Sign in / Sign up

Export Citation Format

Share Document