scholarly journals Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis

Author(s):  
Maryam Geramizadeh ◽  
Hamidreza Katoozian ◽  
Reza Amid ◽  
Mahdi Kadkhodazadeh
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoning Kang ◽  
Yiming Li ◽  
Yixi Wang ◽  
Yao Zhang ◽  
Dongsheng Yu ◽  
...  

Occlusal trauma caused by improper bite forces owing to the lack of periodontal membrane may lead to bone resorption, which is still a problem for the success of dental implant. In our study, to avoid occlusal trauma, we put forward a hypothesis that a microelectromechanical system (MEMS) pressure sensor is settled on an implant abutment to track stress on the abutment and predict the stress on alveolar bone for controlling bite forces in real time. Loading forces of different magnitudes (0 N–100 N) and angles (0–90°) were applied to the crown of the dental implant of the left central incisor in a maxillary model. The stress distribution on the abutment and alveolar bone were analyzed using a three-dimensional finite element analysis (3D FEA). Then, the quantitative relation between them was derived using Origin 2017 software. The results show that the relation between the loading forces and the stresses on the alveolar bone and abutment could be described as 3D surface equations associated with the sine function. The appropriate range of stress on the implant abutment is 1.5 MPa–8.66 MPa, and the acceptable loading force range on the dental implant of the left maxillary central incisor is approximately 6 N–86 N. These results could be used as a reference for the layout of MEMS pressure sensors to maintain alveolar bone dynamic remodeling balance.


2011 ◽  
Vol 12 (4) ◽  
pp. 259-264 ◽  
Author(s):  
Anirudh K Mathur ◽  
Vinaya S Pai ◽  
S Nandini ◽  
Anirban Sarmah

ABSTRACT Aim The purpose of this three-dimensional (3D) finite element study was to investigate orthodontic loading simulation on a single endosseous implant and its surrounding osseous structure, to analyze the resultant stresses and to identify the changes in the bone adjacent to the implant following orthodontic loading. Materials and methods Two models were constructed using finite element method consisting of endosseous dental implant and the surrounding bone. In the first model, the contact between the implant and the bone was simulated showing no osseointegration, while the second model showed 100% osseointegration. Simulated horizontal loads of 20 N, at 90° from the long axis, were applied to the top of the implant. The study simulated loads in a horizontal direction, similar to a distalmesial orthodontic movement. Results In the first model, the stress was mainly concentrated at the neck of the implant and at the closest surrounding bone. In the second model, the stress was chiefly concentrated at the neck of the implant at the level of the cortical superficial bone. The stresses decreased in the cancellous bone area. On the implant, the highest stress concentration was at the first cervical thread decreasing uniformly to the apex. The stress distribution on the mesial and distal sides showed that the maximum compressive stress was localized mesially and the maximum tensile stress distally. If both models are compared, it can be observed that the stresses were less and more evenly distributed in model 1 (initial stability) than in model 2 when osseointegration was assumed. Conclusion A lack of bony support for the implant represents an unfavorable situation from biomechanical point of view that should be considered and solved. As clinical problems mostly occur at the marginal bone region (bacterial plaque accumulation, overcontoured abutments, infections, osseous defects), attention should be focused on this region. Clinical significance When osseointegrated implants are primarily used as anchorage for orthodontic purposes and then as fixed prosthesis, the functional and structural union of titanium to bone should be preserved. How to cite this article Sarmah A, Mathur AK, Gupta V, Pai VS, Nandini S. Finite Element Analysis of Dental Implant as Orthodontic Anchorage. J Contemp Dent Pract 2011;12(4):259-264.


2015 ◽  
Vol 41 (6) ◽  
pp. 646-651 ◽  
Author(s):  
Hakimeh Siadat ◽  
Shervin Hashemzadeh ◽  
Allahyar Geramy ◽  
Seyed Hossein Bassir ◽  
Marzieh Alikhasi

There are some anatomical restrictions in which implants are not possible to be inserted in their conventional configuration. Offset placement of implants in relation to the prosthetic unit could be a treatment solution. The aim of this study was to evaluate the effect of the offset placement of implant-supported prosthesis on the stress distribution around a dental implant using 3D finite element analysis. 3D finite element models of implant placement in the position of a mandibular molar with 4 configurations (0, 0.5, 1, 1.5 mm offset) were created in order to investigate resultant stress/strain distribution. A vertical load of 100 N was applied on the center of the crown of the models. The least stress in peri-implant tissue was found in in-line configuration (0 mm offset). Stress concentration in the peri-implant tissue increased by increasing the amount of offset placement. Maximum stress concentration in all models was detected at the neck of the implant. It can be concluded that the offset placement of a single dental implant does not offer biomechanical advantages regarding reducing stress concentration over the in-line implant configuration. It is suggested that the amount of offset should be as minimum as possible.


2018 ◽  
Vol 876 ◽  
pp. 138-146
Author(s):  
Aswin Yodrux ◽  
Nantakrit Yodpijit ◽  
Manutchanok Jongprasithporn

This paper presents the use of Three-Dimensional Finite Element Method (3D-FEM) for biomechanical analysis on dental implant prosthetics. This research focuses on three patents of threads of dental implant systems from United States Patent and Trademark Office (USPTO) and two new conceptual design models. The three-dimensional finite element analysis is performed on dental implant models, with compressive forces of 50, 100, and 150 N, and a shear force of 20 N with the force angle of 60 degrees with the normal line respectively. The Stress and displacement analysis is conducted at four different areas (abutment, implant, cortical bone, and cancellous bone). Findings from this research provide guidelines for new product design of dental implant prosthetics with stress distribution and displacement characteristics.


Sign in / Sign up

Export Citation Format

Share Document