scholarly journals Synthesis of C,N,S-tridoped TiO2 distribute onto silicone for photocatalytic on degradation of tetracycline under visible light irradiation

2021 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Thuy Le Thi Thanh ◽  
Tung Huynh Thanh ◽  
Hung Nguyen Phi

Using carbon, nitrogen, and sulfur sourced from thiourea to co-doped TiO2 (C,N,S-TiO2), was prepared via hydrothermal method using precursors of titanyl sulfate TiOSO4, obtained by decomposition of ilmenite ore in Binh Dinh. The material used to make the substrate is glass and distributed onto it is silicone and photocatalytic. The structure and properties of materials system were investigated by modern physicochemical analysis methods including scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, diffuse reflection spectroscopy UV-Vis, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and nitrogen isothermal adsorption. The photocatalytic ability of materials system after being carried by silicone is demonstrated by decomposing tetracycline (10 mg/L) in aqueous solution with the yield more than 88% efficiency after 6 hours under visible light irradiation. The optimum dose of the photocatalyst was 0.6 g/L under visible light irradiation. The results indicated that C, N, S co-doped TiO2 demonstrated the highest photocatalytic efficiency and a perspective recyclable potential when it is distributed onto silicone.

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 987 ◽  
Author(s):  
Hui Zhang ◽  
Qi Tang ◽  
Qingshan Li ◽  
Qingwen Song ◽  
Hailiang Wu ◽  
...  

In this study, the effects of disperse blue dye-sensitization on the photocatalytic properties of the Ag-N co-doped TiO2 nanoparticles loaded on polyethylene terephthalate (PET) filaments are investigated under visible light irradiation. The microstructure and photocatalytic properties of the as-synthesized TiO2 nanocomposites, as well as the as-prepared PET filaments, are systematically characterized. The photocatalytic performance of the PET filaments coated with the Ag-N co-doped TiO2 nanoparticles sensitized with disperse blue dyes is evaluated via its capacity of photo-degrading methyl orange (MO) dyes under visible light irradiation. It is found that the holes are the predominant reactive radical species and the hydroxyl and superoxide radicals play a subordinate role in the photocatalytic reaction process. The reaction rate constant of the photocatalytic composite filaments is nearly 4.0 times higher than that of the PET filaments loaded solely with TiO2 nanoparticles. The resultant photocatalytic composite filaments are evident to be capable of repeatedly photo-degrading MO dyes without losing its photocatalytic activity significantly.


2019 ◽  
Vol 43 (3) ◽  
pp. 1562-1568 ◽  
Author(s):  
Maryam Salimi ◽  
Mohammad Behbahani ◽  
Hamid Reza Sobhi ◽  
Mitra Gholami ◽  
Ahmad Jonidi Jafari ◽  
...  

Herein, the photo degradation of amoxicillin (AMX) was thoroughly investigated using Pt and Bi co-doped TiO2 photocatalysts under visible-light irradiation.


2020 ◽  
Vol 46 (15) ◽  
pp. 24744-24752 ◽  
Author(s):  
Weichao Li ◽  
Linkun Xie ◽  
Liexing Zhou ◽  
Josias Ochoa-Lozano ◽  
Chen Li ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1332
Author(s):  
Duc Quang Dao ◽  
Thi Kim Anh Nguyen ◽  
Thanh-Truc Pham ◽  
Eun Woo Shin

Co-doped NiTiO3/g-C3N4 composite photocatalysts were prepared by a modified Pechini method to improve their photocatalytic activity toward methylene blue photodegradation under visible light irradiation. The combination of Co-doped NiTiO3 and g-C3N4 and Co-doping into the NiTiO3 lattice synergistically enhanced the photocatalytic performance of the composite photocatalysts. X-ray photoelectron spectroscopy results for the Co-doped NiTiO3/g-C3N4 composite photocatalysts confirmed Ti-N linkages between the Co-doped NiTiO3 and g-C3N4. In addition, characteristic X-ray diffraction peaks for the NiTiO3 lattice structure clearly indicated substitution of Co into the NiTiO3 lattice structure. The composite structure and Co-doping of the C-x composite photocatalysts (x wt % Co-doped NiTiO3/g-C3N4) not only decreased the emission intensity of the photoluminescence spectra but also the semicircle radius of the Nyquist plot in electrochemical impedance spectroscopy, giving the highest kapp value (7.15 × 10−3 min−1) for the C-1 composite photocatalyst.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2589 ◽  
Author(s):  
Evdokia Galata ◽  
Eleni A. Georgakopoulou ◽  
Maria-Emmanouela Kassalia ◽  
Nefeli Papadopoulou-Fermeli ◽  
Evangelia A. Pavlatou

In this study, the synthesis of smart, polymerically embedded titanium dioxide (TiO2) nanoparticles aimed to exhibit photo-induced anticancer properties under visible light irradiation is investigated. The TiO2 nanoparticles were prepared by utilizing the sol gel method with different dopants, including nitrogen (N-doped), iron (Fe-doped), and nitrogen and iron (Fe,N-doped). The dopants were embedded in an interpenetrating (IP) network microgel synthesized by stimuli responsive poly (N-Isopropylacrylamide-co-polyacrylicacid)–pNipam-co-PAA forming composite particles. All the types of produced particles were characterized by X-ray powder diffraction, micro-Raman, Fourier-transform infrared, X-ray photoelectron, ultra-violet-visible spectroscopy, Field Emission Scanning Electron, Transmission Electron microscopy, and Dynamic Light Scattering techniques. The experimental findings indicate that the doped TiO2 nanoparticles were successfully embedded in the microgel. The N-doped TiO2 nano-powders and composite particles exhibit the best photocatalytic degradation of the pollutant methylene blue under visible light irradiation. Similarly, the highly malignant MDA-MB-231 breast cancer epithelial cells were susceptible to the inhibition of cell proliferation at visible light, especially in the presence of N-doped powders and composites, compared to the non-metastatic MCF-7 cells, which were not affected.


Different weight percentages (0.25-1.00 wt%) of Nitrogen (Non-Metal) and Manganese (Metal) co-doped nano titania were synthesized by sol-gel method and characterized by XRD, UV-vis.DRS, FT-IR, XPS, SEM and TEM. The XRD results has shown that all the prepared catalysts are in anatase phase indicating that co-doping of N and Mn did not affect the crystal structure of TiO2 . From the UV-vis.DRS spectra a significant absorption shift towards visible region was noticed in N and Mn co-doped TiO2 and their presence was confirmed by XPS and FT-IR results. SEM and TEM results showed spherical nanoparticles with average particle size of 9 nm. Photocatalytic efficiency of synthesized nano materials was tested on non-biodegradable organophosphorous pesticide, Malathion under visible light irradiation. The effect of dopant concentration, pH, catalyst dosage, and initial pesticide concentration on photocatalytic degradation of malathion was studied and optimum conditions were established. Among the synthesized samples 0.50 wt% N & 1.00 wt% Mn-TiO2 exhibited best photocatalytic performance. Photoluminiscent spectroscopy (PL) was used to examine the rate of production of oxidative species, hydroxyl radicals which play key role in photocatalytic degradation.


2003 ◽  
Vol 32 (12) ◽  
pp. 1156-1157 ◽  
Author(s):  
Yoshiaki Sakatani ◽  
Jun Nunoshige ◽  
Hiroyuki Ando ◽  
Kensen Okusako ◽  
Hironobu Koike ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document