scholarly journals Learning rate optimisation of an image processing deep convolutional neural network

2021 ◽  
Author(s):  
◽  
Sibusiso Blessing Buthelezi

The major contribution of this dissertation is the proposal of the use of mathematical models to identify an optimal learning rate for an image processing deep convolutional neural network (DCNN). This model is derived from a nonlinear regression relationship between the learning rate and the accuracy of a test DCNN model. This relationship is meant to (A) resolve the problem of arbitrarily selecting the initial learning rate (B) reduce computational resource requirement and (C) reduce training instabilities. An algorithm is developed to analyse an inputted DCNN model and subsequently render output parameters that may be used to aid in the selection of an OLR. The benefit of an OLR includes improved training stability and reduced computational resources. The results rendered by the OLR algorithm proposes that an optimal learning rate improves model performance; this is described by the test model average accuracy of 91%. Furthermore, a model validation graph is also extrapolated. which will illustrate the mathematical model accuracy and the region of interest (ROI). The ROI defines the region in the learning rate spectrum with a positive effect on model performance.


Author(s):  
Alexander Driyarkoro ◽  
Nurain Silalahi ◽  
Joko Haryatno

Prediksi lokasi user pada mobile network merupakan hal sangat penting, karena routing panggilan pada mobile station (MS) bergantung pada posisi MS saat itu. Mobilitas MS yang cukup tinggi, terutama di daerah perkotaan, menyebabkan pencarian (tracking) MS akan berpengaruh pada kinerja sistem mobile network, khususnya dalam hal efisiensi kanal kontrol pada air interface. Salah satu bentuk pencarian adalah dengan mengetahui perilaku gerakan yang menentukan posisi MS. Dari MSC/VLR dapat diketahui posisi MS pada waktu tertentu. Karena location area suatu MS selalu unik dari waktu ke waktu, dan hal itu merupakan perilaku (behaviour) MS, maka dapat dibuat profil pergerakannya. Dengan menggunakan Neural Network (NN) akan diperoleh location area MS pada masa yang akan datang. Model NN yang digunakan pada penelitian ini adalah Propagasi Balik. Beberapa parameter NN yang diteliti dalam mempengaruhi kinerja prediksi lokasi user meliputi noise factor, momentum dan learning rate. Pada penelitian ini diperoleh nilai optimal learning rate = 0,5 dan noise factor = 1.





2020 ◽  
pp. 464-465
Author(s):  
Vijayaganth V ◽  
Naveenkumar M ◽  
Mohan M

The disease in tomato leaves affects the quality and quantity of the crops. To overcome this problem an early diagnosis of diseases will benefit the farmers. This work uses PlantVillage dataset of 9 tomato leaves and fed to AlexNet and VGG16. It focuses on accuracy of the model by using hyperparameters like batch size, learning rate and optimizer.



2021 ◽  
Vol 2 (1) ◽  
pp. 06-11
Author(s):  
Suriani Alamgunawan ◽  
Yosi Kristian

Convolutional Neural Network sebagai salah satu metode Deep Learning yang paling sering digunakan dalam klasifikasi, khususnya pada citra. Terkenal dengan kedalaman dan kemampuan dalam menentukan parameter sendiri, yang memungkinkan CNN mampu mengeksplor citra tanpa batas. Tujuan penelitian ini adalah untuk meneliti klasifikasi tekstur serat kayu pada citra mikroskopik veneer dengan CNN. Model CNN akan dibangun menggunakan MBConv dan arsitektur lapisan akan didesain menggunakan EfficientNet. Diharapkan  dapat tercapai tingkat akurasi yang tinggi dengan penggunaan jumlah parameter yang sedikit. Dalam penelitian ini akan mendesain empat model arsitektur CNN, yaitu model RGB tanpa contrast stretching, RGB dengan contrast stretching, Grayscale tanpa contrast stretching dan Grayscale dengan contrast stretching. Proses ujicoba akan mencakup proses pelatihan, validasi dan uji pada masing-masing input citra pada setiap model arsitektur. Dengan menggunakan penghitungan softmax sebagai penentu kelas klasifikasi. SGD optimizer digunakan sebagai optimization dengan learning rate 1e-1. Hasil penelitian akan dievaluasi dengan menghitung akurasi dan error dengan menggunakan metode F1-score. Penggunaan channel RGB tanpa contrast stretching sebagai citra input menunjukkan hasil uji coba yang terbaik.



PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256500
Author(s):  
Maleika Heenaye-Mamode Khan ◽  
Nazmeen Boodoo-Jahangeer ◽  
Wasiimah Dullull ◽  
Shaista Nathire ◽  
Xiaohong Gao ◽  
...  

The real cause of breast cancer is very challenging to determine and therefore early detection of the disease is necessary for reducing the death rate due to risks of breast cancer. Early detection of cancer boosts increasing the survival chance up to 8%. Primarily, breast images emanating from mammograms, X-Rays or MRI are analyzed by radiologists to detect abnormalities. However, even experienced radiologists face problems in identifying features like micro-calcifications, lumps and masses, leading to high false positive and high false negative. Recent advancement in image processing and deep learning create some hopes in devising more enhanced applications that can be used for the early detection of breast cancer. In this work, we have developed a Deep Convolutional Neural Network (CNN) to segment and classify the various types of breast abnormalities, such as calcifications, masses, asymmetry and carcinomas, unlike existing research work, which mainly classified the cancer into benign and malignant, leading to improved disease management. Firstly, a transfer learning was carried out on our dataset using the pre-trained model ResNet50. Along similar lines, we have developed an enhanced deep learning model, in which learning rate is considered as one of the most important attributes while training the neural network. The learning rate is set adaptively in our proposed model based on changes in error curves during the learning process involved. The proposed deep learning model has achieved a performance of 88% in the classification of these four types of breast cancer abnormalities such as, masses, calcifications, carcinomas and asymmetry mammograms.



Sign in / Sign up

Export Citation Format

Share Document