scholarly journals METHODS ANALYSIS FOR PHASE MEASUREMENT IN WELDED SAMPLE OF SUPERDUPLEX STAINLESS STEEL UNS S32750

Author(s):  
Francisco Magalhães dos Santos Júnior
Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1094
Author(s):  
M. A. Lakhdari ◽  
F. Krajcarz ◽  
J. D. Mithieux ◽  
H. P. Van Landeghem ◽  
M. Veron

The impact of microstructure evolution on mechanical properties in superduplex stainless steel UNS S32750 (EN 1.4410) was investigated. To this end, different thermomechanical treatments were carried out in order to obtain clearly distinct duplex microstructures. Optical microscopy and scanning electron microscopy, together with texture measurements, were used to characterize the morphology and the preferred orientations of ferrite and austenite in all microstructures. Additionally, the mechanical properties were assessed by tensile tests with digital image correlation. Phase morphology was not found to significantly affect the mechanical properties and neither were phase volume fractions within 13% of the 50/50 ratio. Austenite texture was the same combined Goss/Brass texture regardless of thermomechanical processing, while ferrite texture was mainly described by α-fiber orientations. Ferrite texture and average phase spacing were found to have a notable effect on mechanical properties. One of the original microstructures of superduplex stainless steel obtained here shows a strength improvement by the order of 120 MPa over the industrial material.


2018 ◽  
Vol 7 (3) ◽  
pp. 366-370 ◽  
Author(s):  
Cesar G. Camerini ◽  
Vitor Manoel A. Silva ◽  
Iane A. Soares ◽  
Rafael Wagner F. Santos ◽  
Julio Endress Ramos ◽  
...  

2012 ◽  
Vol 28 (3) ◽  
pp. 295-302 ◽  
Author(s):  
J M Pardal ◽  
S S M Tavares ◽  
M P Cindra Fonseca ◽  
M R da Silva ◽  
M L R Ferreira

2019 ◽  
Vol 9 (6) ◽  
pp. 1050 ◽  
Author(s):  
Maria Valiente Bermejo ◽  
Kjell Hurtig ◽  
Daniel Eyzop ◽  
Leif Karlsson

Type 2507 superduplex stainless steel 20 mm in thickness was multi-pass-welded with Gas Metal Arc Welding (GMAW) and Flux-Cored Arc Welding (FCAW) processes. Recommended and higher arc energies and inter-pass temperatures were used. Thermal cycles were monitored using a recently developed procedure involving the successive instrumentation of the multi-pass welds, pass by pass, by addition of thermocouples in each weld pass. The repeatability of temperature measurements and survival rate of more than 90% of thermocouples confirmed the reliability of the procedure. Reheating by subsequent passes caused a progressive increase in the austenite content of the weld metal. The as-deposited GMAW passes with higher-than-recommended arc energy showed the lowest presence of nitrides. Therefore, the cooling rate—and not the time exposed at the critical temperature range—seems to be the key factor for nitride formation. The welding sequence layout also plays an important role in the distribution of secondary phases. A larger amount and concentration of secondary austenite and σ-phase was found for a larger number of subsequent passes in the immediate vicinity of a specific weld pass. The impact toughness exceeded requirements for all welds. Differences in absorbed energies were related to the amount of micro-inclusions found with the FCAW weld showing the lowest absorbed energies and highest amount of micro-inclusions. Pitting corrosion preferentially initiated in locations with secondary austenite and σ-phase. However, in the absence of these secondary phases, the HAZ containing nitrides was the weakest location where pitting initiated. The results of this work have implications on practical welding for superduplex stainless steels: the current recommendations on maximum arc energy should be revised for large thickness weldments, and the importance of the welding sequence layout on the formation of secondary phases should be considered.


2016 ◽  
Vol 93 ◽  
pp. 168-179 ◽  
Author(s):  
Gianfranco Palumbo ◽  
Vito Piglionico ◽  
Donato Sorgente ◽  
Antonio Piccininni ◽  
Pasquale Guglielmi ◽  
...  

2019 ◽  
Vol 137 ◽  
pp. 212-227 ◽  
Author(s):  
Yassmin Seid Ahmed ◽  
Jose Mario Paiva ◽  
Bipasha Bose ◽  
Stephen Clarence Veldhuis

Sign in / Sign up

Export Citation Format

Share Document