scholarly journals Effect of Full Implementation of Domestic Solar Water Heaters on the Electricity Peak Load in Libya

2021 ◽  
Vol 5 (2) ◽  
Author(s):  
M. J. R Abdunnabi ◽  
K Dadesh ◽  
O. R Mrehel ◽  
N El-shamekh

Electricity plays an important role in the contemporary life, and it has become indispensable nowadays. Reducing the peak electricity load and increasing the load factor have been considered as one of the main tasks that have to be accomplished by both electricity generation-side and demand-side managements.The residential sector of Libya consumes over 31% of the total sold electricity, and 29.8% of that is delivered to the electric water heating load. This is an inefficient way of electricity utilization. Usually, the electricity supplier in Libya used to increase the local generation capacity or import electricity from neighboring countries. Both solutions did not resolve the problem. This work attempts to investigate the effect of replacing electric water heaters in the residential sector of Libya by solar water heaters on reducing the electricity peakload and increasing the load factor. The results show that on average 3% of the peak load demand can be saved. This is equivalent to 149.5 MW of reduced power. The study also revealed that the annual amount of energy saved is up to 2.55TWh, and the load factor is improved by 2% (i.e. from 65% to 67%). This saved energy is equivalent to a power plant with a nominal capacity of 448 MW considering a load factor of 0.65

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6261
Author(s):  
Syed Ali Raza ◽  
Syed Sulman Ahmad ◽  
Tahir Abdul Hussain Ratlamwala ◽  
Ghulam Hussain ◽  
Mohammed Alkahtani

In the residential sector, a great part of the electricity goes into heating water by electric water heaters, which results in high CO2 emissions as well as an unprecedented increase in electricity demand leading to an energy crisis. This study offers solar water heaters as a more economical and efficient replacement for electric water heaters. The present study is aimed at investigating the potential for solar water heaters in the subcontinent, especially in India. A feasibility analysis is performed for seven cities in the subcontinent, namely Mumbai, New Delhi, Kolkata, Assam, Gujrat and Madhya Pradesh. Simulated results are based on a solar fraction, equity payback, multiple collectors (one, two or three), horizontal and tilted, type of collector (evacuated tube, glazed and unglazed), electricity saved and greenhouse gas (GHG) emission reduction. The collector’s area is made such that it should receive at least 50% of the solar fraction. The range of payback period varies from five to 15 years. The results show Gujrat being the most ideal site for solar water heaters.


Sign in / Sign up

Export Citation Format

Share Document