scholarly journals Dispersal and Evolution in Chemoautosynthesis-based Communities in the Western Pacific-Verrucomorphs as Test Species for Evolutionary Studies on Hydrothermal Vent-endemic Animals-

2003 ◽  
Vol 58 ◽  
pp. 44-49 ◽  
Author(s):  
Hiromi WATANABE
2016 ◽  
Vol 113 (11) ◽  
pp. 2976-2981 ◽  
Author(s):  
Satoshi Mitarai ◽  
Hiromi Watanabe ◽  
Yuichi Nakajima ◽  
Alexander F. Shchepetkin ◽  
James C. McWilliams

Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth.


Zootaxa ◽  
2008 ◽  
Vol 1839 (1) ◽  
pp. 43 ◽  
Author(s):  
THOMAS A. MUNROE ◽  
JUN HASHIMOTO

Symphurus thermophilus n. sp., described from 16 specimens collected by submersibles, ROV, epibenthic sled and dredge, occurs on a variety of substrata at several active hydrothermal sites located at 239–733 m between 21°N and 35°S in the western Pacific Ocean. Symphurus thermophilus, the only pleuronectiform fish known to inhabit hydrothermal vent areas, is characterized by the combination of a 1–2–2–2–2 pattern of interdigitation of dorsal proximal pterygiophores and neural spines, 14 caudal-fin rays, 5 hypurals, 9 abdominal vertebrae, 47–51 total vertebrae, 88–94 dorsal-fin rays, 74–80 anal-fin rays, 100–112 scales in longitudinal series, ocular-side pigmentation pattern featuring 5–8, black, mostly incomplete crossbands, uniformly white blind side, and black peritoneum. Of specimens examined, seven including the holotype, were collected on Kaikata Seamount off southern Japan; one specimen was collected at the Kasuga-2 hydrothermal vent, Marianas Islands; and six were collected at sites on the Kermadec Ridge. In addition to specimens captured, many other S. thermophilus were observed from submersibles and ROVs at hydrothermal sites in the western Pacific including those in the Marianas Islands, at Nikko Seamount near Minami-Iohjima Island, and at Minami-Ensei Knoll, Mid-Okinawa Trough. Many of the specimens examined have skeletal anomalies including fused bones in the caudal skeleton, and missing or partially developed and/or misshapen fin rays.


2001 ◽  
Vol 200 (3) ◽  
pp. 298-304 ◽  
Author(s):  
S. Kojima ◽  
R. Segawa ◽  
Y. Fijiwara ◽  
K. Fujikura ◽  
S. Ohta ◽  
...  

2012 ◽  
Vol 30 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Jin-Shu Yang ◽  
Bo Lu ◽  
Dian-Fu Chen ◽  
Yan-Qin Yu ◽  
Fan Yang ◽  
...  

Abstract Hydrothermal vents are typically located in midocean ridges and back-arc basins and are usually generated by the movement of tectonic plates. Life thrives in these environments despite the extreme conditions. In addition to chemoautotrophic bacteria, decapod crustaceans are dominant in many of the hydrothermal vents discovered to date. Contrary to the hypothesis that these species are remnants of relic fauna, increasing evidence supports the notion that hydrothermal vent decapods have diversified in more recent times with previous research attributing the origin of alvinocarid shrimps to the Miocene. This study investigated seven representative decapod species from four hydrothermal vents throughout the Western Pacific and Indian Oceans. A partitioned mix-model phylogenomic analysis of mitochondrial DNA produced a consistent phylogenetic topology of these vent-endemic species. Additionally, molecular dating analysis calibrated using multiple fossils suggested that both bythograeid crabs and alvinocarid shrimps originated in the late Mesozoic and early Cenozoic. Although of limited sampling, our estimates support the extinction/repopulation hypothesis, which postulates recent diversification times for most hydrothermal vent species due to their mass extinction by global deep-water anoxic/dysoxic events during the Late Cretaceous and Early Tertiary. The continental-derived property of the West Pacific province is compatible with the possibility that vent decapods diversified from ancestors from shallow-water regions such as cold seeps. Our results move us a step closer toward understanding the evolutionary origin of hydrothermal vent species and their distribution in the Western Pacific–Indian Ocean Region.


Sign in / Sign up

Export Citation Format

Share Document