scholarly journals Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments

2010 ◽  
Vol 10 (9) ◽  
pp. 4085-4095 ◽  
Author(s):  
C. Baduel ◽  
D. Voisin ◽  
J.-L. Jaffrezo

Abstract. Major contributors to the organic aerosol include water-soluble macromolecular compounds (e.g. HULISWS: Water Soluble Humic LIke Substances). The nature and sources of HULISWS are still largely unknown. This work is based on a monitoring in six different French cities performed during summer and winter seasons. HULISWS analysis was performed with a selective method of extraction complemented by carbon quantification. UV spectroscopy was also applied for their chemical characterisation. HULISWS carbon represent an important contribution to the organic aerosol mass in summer and winter, as it accounts for 12–22% of Organic Carbon and 34–40% of Water Soluble Organic Carbon. We found strong differences in the optical properties (specific absorbance at 250, 272, 280 nm and E2/E3 ratio) and therefore in the chemical structure between HULISWS from samples of summer- and wintertime. These differences highlight different processes responsible for emissions and formation of HULISWS according to the season, namely biomass burning in winter, and secondary processes in summer. Specific absorbance can also be considered as a rapid and useful indicator of the origin of HULISWS in urban environment.

Author(s):  
Vikram Pratap ◽  
Amy E. Christiansen ◽  
Annmarie G. Carlton ◽  
Sara Lance ◽  
Paul Casson ◽  
...  

Cloud cycling plays a key role in the evolution of atmospheric particles and gases, producing secondary aerosol mass and transforming the optical properties and impacts of aerosols globally.


2009 ◽  
Vol 9 (5) ◽  
pp. 21561-21579 ◽  
Author(s):  
C. Baduel ◽  
D. Voisin ◽  
J.-L. Jaffrezo

Abstract. Major contributors to the organic aerosol include water-soluble macromolecular compounds (e.g. HULISWS). The nature and sources of HULISWSare still largely unknown. This work is based on a monitoring in six different French cities performed during summer and winter seasons. HULISWS analysis was performed with a selective method of extraction complemented by carbon quantification. UV spectroscopy was also applied for their chemical characterisation. Strong differences in the optical properties and therefore in the chemical structure (i.e. the aromaticity) between HULISWS from samples of summer- and wintertime are found. These differences highlight different processes responsible for emissions and formation of HULISWS according to the season. Specific absorbance can also be considered as a rapid and useful indicator of the origin of HULISWS in urban environment.


2014 ◽  
Vol 119 (6) ◽  
pp. 3476-3485 ◽  
Author(s):  
Elena N. Kirillova ◽  
August Andersson ◽  
Suresh Tiwari ◽  
Atul Kumar Srivastava ◽  
Deewan Singh Bisht ◽  
...  

2011 ◽  
Vol 11 (22) ◽  
pp. 11497-11510 ◽  
Author(s):  
Y. Cheng ◽  
K.-B. He ◽  
M. Zheng ◽  
F.-K. Duan ◽  
Z.-Y. Du ◽  
...  

Abstract. The mass absorption efficiency (MAE) of elemental carbon (EC) in Beijing was quantified using a thermal-optical carbon analyzer. The MAE measured at 632 nm was 8.45±1.71 and 9.41±1.92 m2 g−1 during winter and summer respectively. The daily variation of MAE was found to coincide with the abundance of organic carbon (OC), especially the OC to EC ratio, perhaps due to the enhancement by coating with organic aerosol (especially secondary organic aerosol, SOA) or the artifacts resulting from the redistribution of liquid-like organic particles during the filter-based absorption measurements. Using a converting approach that accounts for the discrepancy caused by measurements methods of both light absorption and EC concentration, previously published MAE values were converted to the equivalent-MAE, which is the estimated value if using the same measurement methods as used in this study. The equivalent-MAE was found to be much lower in the regions heavily impacted by biomass burning (e.g., below 2.7 m2 g−1 for two Indian cities). Results from source samples (including diesel exhaust samples and biomass smoke samples) also demonstrated that emissions from biomass burning would decrease the MAE of EC. Moreover, optical properties of water-soluble organic carbon (WSOC) in Beijing were presented. Light absorption by WSOC exhibited strong wavelength (λ) dependence such that absorption varied approximately as λ−7, which was characteristic of the brown carbon spectra. The MAE of WSOC (measured at 365 nm) was 1.79±0.24 and 0.71±0.20 m2 g−1 during winter and summer respectively. The large discrepancy between the MAE of WSOC during winter and summer was attributed to the difference in the precursors of SOA such that anthropogenic volatile organic compounds (AVOCs) should be more important as the precursors of SOA in winter. The MAE of WSOC in Beijing was much higher than results from the southeastern United States which were obtained using the same method as used in this study, perhaps due to the stronger emissions of biomass burning in China.


2014 ◽  
Vol 14 (12) ◽  
pp. 6075-6088 ◽  
Author(s):  
M.-C. G. Chalbot ◽  
J. Brown ◽  
P. Chitranshi ◽  
G. Gamboa da Costa ◽  
E. D. Pollock ◽  
...  

Abstract. The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp < 0.96 μm. Non-exchangeable aliphatic (H–C), unsaturated aliphatic (H–C–C=), oxygenated saturated aliphatic (H–C–O), acetalic (O–CH–O) and aromatic (Ar–H) protons were determined by proton nuclear magnetic resonance (1H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m−3 for particles with 1.5 < dp < 3.0 μm to 73.9 ± 12.3 nmol m−3 for particles with dp < 0.49 μm. The molar H / C ratios varied from 0.48 ± 0.05 to 0.92 ± 0.09, which were comparable to those observed for combustion-related organic aerosol. The R–H was the most abundant group, representing about 45% of measured total non-exchangeable organic hydrogen concentrations, followed by H–C–O (27%) and H–C–C= (26%). Levoglucosan, amines, ammonium and methanesulfonate were identified in NMR fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from −26.81 ± 0.18‰ for the smallest particles to −25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.


2017 ◽  
Author(s):  
Heejun Han ◽  
Guebuem Kim

Abstract. Atmospheric humic-like substance (HULIS) is an important fraction of water-soluble organic carbon (WSOC) accounting for the light-absorbing properties of organic aerosols. HULIS is responsible for light-absorbing properties of organic aerosols in the atmosphere. Although various sources of HULIS have been studied extensively, its sinks are poorly constrained. In this study, we found seasonal changes in the optical and chemical characteristics of HULIS and WSOC, which are decreased by approximately 80 % and 30 %, respectively, from the cold season (Oct–Jan) to the warm season (Jun–Sep) due to enhanced solar ultraviolet (UV) radiation. The dominant role of photochemical degradation on light-absorbing organic aerosols, as a sink of HULIS, was further confirmed based on a laboratory experiment by evaluating impact of UV radiation on the optical properties of HULIS and WSOC contents. Our results suggest that seasonal variation of HULIS in WSOC is resulted mainly by photo-induced degradation in the atmosphere. Thus, photochemical degradation of HULIS seems to play a critical role on seasonal variations in the light-absorbing properties of organic aerosols as well as the biogeochemical impact of WSOC on Earth’s surface.


2019 ◽  
Vol 9 (7) ◽  
pp. 1443 ◽  
Author(s):  
Chang Jung ◽  
Ji Lee ◽  
Junshik Um ◽  
Seoung Lee ◽  
Young Yoon ◽  
...  

We estimated source-based aerosol optical properties for polydisperse aerosols according to a chemical-species-resolved mass contribution method based on source apportionment. We investigated the sensitivity of aerosol optical properties based on PM2.5 (particulate matter that have a diameter of less than 2.5 micrometers) monitoring results. These aerosols were composed of ions, metals, elemental carbon, and water-soluble organic carbon which includes humic-like carbon substances and water-soluble organic carbon. We calculated aerosols’ extinction coefficients based on the PM2.5 composition data and the results of a multivariate receptor model (Solver for Mixture Problem model, SMP). Based on the mass concentration of chemical composition and nine sources calculated with the SMP receptor model, we estimated the size-resolved mass extinction efficiencies for each aerosol source using a multilinear regression model. Consequently, this study quantitatively determined the size resolved sources contributing to the apportionment-based aerosol optical properties and calculated their respective contributions. The results show that source-resolved mass concentrations and extinction coefficients had varying contributions. This discrepancy between the source-based mass concentration and extinction coefficient was mainly due to differences between the source-dependent aerosol size distribution and the aerosol optical properties from different sources.


2012 ◽  
Vol 12 (4) ◽  
pp. 9621-9664 ◽  
Author(s):  
X. Zhang ◽  
Z. Liu ◽  
A. Hecobian ◽  
M. Zheng ◽  
N. H. Frank ◽  
...  

Abstract. Secondary organic aerosol (SOA) in the Southeastern US is investigated by analyzing the spatial-temporal distribution of water-soluble organic carbon (WSOC) and other PM2.5 components from 900 archived 24 h Teflon filters collected at 15 urban or rural EPA Federal Reference Method (FRM) network sites throughout 2007. Online measurements of WSOC at an urban/rural-paired site in Georgia in the summer of 2008 are contrasted to the filter data. Based on FRM filters, excluding biomass-burning events (levoglucosan < 50 ng m−3), WSOC and sulfate were highly correlated with PM2.5 mass and both comprised a large mass fraction of PM2.5 (13% and 35%, respectively). Sulfate and WSOC both tracked ambient temperature throughout the year, suggesting the temperature effects were mainly on the photochemical processes that lead to secondary formation. FRM WSOC, and to a lesser extent sulfate, were spatially homogeneous throughout the region, yet WSOC was moderately enhanced (27%) in locations of greater predicted isoprene emissions in summer. A Positive Matrix Factorization (PMF) analysis identified two major source types for the summer WSOC; 22% of the WSOC were associated with ammonium sulfate, and 56% of the WSOC was associated with brown carbon and oxalate. A small urban excess of FRM WSOC (10%) was observed in the summer of 2007, however, comparisons of online WSOC measurements at one urban/rural pair (Atlanta/Yorkville) in August 2008 showed substantially greater difference in WSOC (31%) relative to the FRM data, suggesting a low bias for urban filters. The measured Atlanta urban excess, combined with the estimated boundary layer heights, gave an estimated Atlanta daily WSOC production rate in August of 0.55 mg C m−2 h−1 between mid-morning and mid-afternoon. This study characterizes the regional nature of fine particles in the Southeastern US, confirming the importance of secondary organic aerosol and the roles of both biogenic and anthropogenic emissions.


Sign in / Sign up

Export Citation Format

Share Document