scholarly journals Effects of atmospheric conditions on ice nucleation activity of <i>Pseudomonas</i>

2012 ◽  
Vol 12 (22) ◽  
pp. 10667-10677 ◽  
Author(s):  
E. Attard ◽  
H. Yang ◽  
A.-M. Delort ◽  
P. Amato ◽  
U. Pöschl ◽  
...  

Abstract. Although ice nuclei from bacterial origin are known to be efficient at the highest temperatures known for ice catalysts, quantitative data are still needed to assess their role in cloud processes. Here we studied the effects of three typical cloud conditions (i) acidic pH (ii) NO2 and O3 exposure and (iii) UV-A exposure on the ice nucleation activity (INA) of four Pseudomonas strains. Three of the Pseudomonas syringae strains were isolated from cloud water and the phyllosphere and Pseudomonas fluorescens strain CGina-01 was isolated from Antarctic glacier ice melt. Among the three conditions tested, acidic pH caused the most significant effects on INA likely due to denaturation of the ice nucleation protein complex. Exposure to NO2 and O3 gases had no significant or only weak effects on the INA of two P. syringae strains whereas the INA of P. fluorescens CGina-01 was significantly affected. The INA of the third P. syringae strain showed variable responses to NO2 and O3 exposure. These differences in the INA of different Pseudomonas suggest that the response to atmospheric conditions could be strain-specific. After UV-A exposure, a substantial loss of viability of all four strains was observed whereas their INA decreased only slightly. This corroborates the notion that under certain conditions dead bacterial cells can maintain their INA. Overall, the negative effects of the three environmental factors on INA were more significant at the warmer temperatures. Our results suggest that in clouds where temperatures are near 0 °C, the importance of bacterial ice nucleation in precipitation processes could be reduced by some environmental factors.

2012 ◽  
Vol 12 (4) ◽  
pp. 9491-9516 ◽  
Author(s):  
E. Attard ◽  
H. Yang ◽  
A.-M. Delort ◽  
P. Amato ◽  
U. Pöschl ◽  
...  

Abstract. Although ice nuclei from bacterial origin are known to be efficient at the highest temperatures known for ice catalysts, quantitative data are still needed to assess their role in cloud processes. Here we studied the effects of three typical cloud conditions (i) acidic pH (ii) NO2 and O3 exposure and (iii) UV-A exposure on the ice nucleation activity (INA) of four Pseudomonas strains. Three of the Pseudomonas syringae strains were isolated from cloud water and the phyllosphere and Pseudomonas fluorescens strain CGina-01 was isolated from Antarctic glacier ice melt. Among the three conditions tested, acidic pH caused the most significant effects on INA likely due to denaturation of the ice nucleation protein complex. Exposure to NO2 and O3 gases had no significant or only weak effects on the INA of two P. syringae strains whereas the INA of P. fluorescens CGina-01 was significantly affected. The INA of the third P. syringae strain showed variable responses to NO2 and O3 exposure. These differences in the INA of different Pseudomonas suggest that the response to atmospheric conditions could be strain-specific. After UV-A exposure, a substantial loss of viability of all four strains was observed whereas their INA decreased only slightly. This corroborates the notion that under certain conditions dead bacterial cells can maintain their INA. Overall, the negative effects of the three environmental factors on INA were more significant at the warmer temperatures. Our results suggest that in clouds where temperatures are near 0 °C, the importance of bacterial ice nucleation in precipitation processes could be reduced by some environmental factors.


2019 ◽  
Vol 16 (8) ◽  
pp. 1675-1683 ◽  
Author(s):  
Yalda Vasebi ◽  
Marco E. Mechan Llontop ◽  
Regina Hanlon ◽  
David G. Schmale III ◽  
Russell Schnell ◽  
...  

Abstract. Decaying vegetation was determined to be a potentially important source of atmospheric ice nucleation particles (INPs) in the early 1970s. The bacterium Pseudomonas syringae was the first microorganism with ice nucleation activity (INA) isolated from decaying leaf litter in 1974. However, the ice nucleation characteristics of P. syringae are not compatible with the characteristics of leaf litter-derived INPs since the latter were found to be sub-micron in size, while INA of P. syringae depends on much larger intact bacterial cells. Here we determined the cumulative ice nucleation spectrum and microbial community composition of the historic leaf litter sample 70-S-14 collected in 1970 that conserved INA for 48 years. The majority of the leaf litter-derived INPs were confirmed to be sub-micron in size and to be sensitive to boiling. Culture-independent microbial community analysis only identified Pseudomonas as potential INA. Culture-dependent analysis identified one P. syringae isolate, two isolates of the bacterial species Pantoea ananatis, and one fungal isolate of Mortierella alpina as having INA among 1170 bacterial colonies and 277 fungal isolates, respectively. Both Pa. ananatis and M. alpina are organisms that produce heat-sensitive sub-micron INPs. They are thus both likely sources of the INPs present in sample 70-S-14 and may represent important terrestrial sources of atmospheric INPs, a conclusion that is in line with other recent results obtained in regard to INPs from soil, precipitation, and the atmosphere.


mBio ◽  
2010 ◽  
Vol 1 (3) ◽  
Author(s):  
C. E. Morris ◽  
D. C. Sands ◽  
J. L. Vanneste ◽  
J. Montarry ◽  
B. Oakley ◽  
...  

ABSTRACTNonhost environmental reservoirs of pathogens play key roles in their evolutionary ecology and in particular in the evolution of pathogenicity. In light of recent reports of the plant pathogenPseudomonas syringaein pristine waters outside agricultural regions and its dissemination via the water cycle, we have examined the genetic and phenotypic diversity, population structure, and biogeography ofP. syringaefrom headwaters of rivers on three continents and their phylogenetic relationship to strains from crops. A collection of 236 strains from 11 sites in the United States, in France, and in New Zealand was characterized for genetic diversity based on housekeeping gene sequences and for phenotypic diversity based on measures of pathogenicity and ice nucleation activity. Phylogenetic analyses revealed several new genetic clades from water. The genetic structure ofP. syringaepopulations was not influenced by geographic location or water chemistry, whereas the phenotypic structure was affected by these parameters. Comparison with strains from crops revealed that the metapopulation ofP. syringaeis structured into three genetic ecotypes: a crop-specific type, a water-specific type, and an abundant ecotype found in both habitats. Aggressiveness of strains was significantly and positively correlated with ice nucleation activity. Furthermore, the ubiquitous genotypes were the most aggressive, on average. The abundance and diversity in water relative to crops suggest that adaptation to the freshwater habitat has played a nonnegligible role in the evolutionary history ofP. syringae. We discuss how adaptation to the water cycle is linked to the epidemiological success of this plant pathogen.IMPORTANCEMany pathogens have life cycles that involve survival and multiplication in nonhost environmental habitats. For human pathogens, numerous studies have revealed how adaptation to environmental habitats is linked to the evolution of their pathogenicity and emergence of pathogens. For plant pathogens, the link between adaptation to nonhost habitats and pathogenicity has not been explored. Here we have examined the genetic and phenotypic diversity of the plant pathogenPseudomonas syringaein headwaters of rivers on three continents and compared it to that of strains from crops. This model pathogen was chosen because it is widely abundant in habitats associated with the water cycle and in particular in pristine waters outside agricultural regions. This work reveals that there is considerable exchange of populations between freshwater and agricultural habitats and that those in the former contribute considerably to the diversification ofP. syringae.


2012 ◽  
Vol 12 (10) ◽  
pp. 26143-26171 ◽  
Author(s):  
C. E. Morris ◽  
D. C. Sands ◽  
C. Glaux ◽  
J. Samsatly ◽  
S. Asaad ◽  
...  

Abstract. In light of various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause that illustrate the important role of rainfall in their life history, we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections from 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active having freezing onset temperatures as warm as −4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. We suggest that air sampling techniques have ignored the spatial and temporal variability of atmospheric concentrations that occur under conditions propitious for precipitation that could increase their local abundance intermittently. Nevertheless, we propose that the relative low abundance of warm-temperature biological ice nucleators in the atmosphere corresponds to optimal conditions for the processes of evolution to positively select for INA.


2014 ◽  
Vol 22 (03) ◽  
pp. 1450012 ◽  
Author(s):  
JIN HU ◽  
OSMANN SARI ◽  
CYRIL MAHMED

Ice storage is one technique for effective use of thermal energy. Application of bionucleant (a protein from the bacterium Pseudomonas syringae) as a snow inducer in ski field has shown great potential to enhance the quantity of snow and increase freezing temperature. In this study, differential scanning calorimeter (DSC) and lab-built ice formation reactor were employed to study experimentally the heterogeneous ice nucleation under super-cooled conditions at different dissolved bionucleant concentrations. It was found the degree of supercooling is reduced by addition of bionucleant. However, ice nucleation-activity of bionucleant will drop down when bionucleant solution is saturated/supersaturated. In our DSC measured heat release study, when bionucleant acts as ice nucleation agent in aqueous solution, prior to reaching its saturation/supersaturation, there is an increase in latent heat release during freezing/melting as the amount of dissolved bionucleant increases. In another test, the supercooling does not occur in 0.5% bionucleant solution, it began to freeze around 0°C. Our results suggest that, the addition of bionucleant may help induce ice nucleation and increase freezing temperature thereby reduces the energy consumption of ice formation for cold storage.


2013 ◽  
Vol 13 (8) ◽  
pp. 4223-4233 ◽  
Author(s):  
C. E. Morris ◽  
D. C. Sands ◽  
C. Glaux ◽  
J. Samsatly ◽  
S. Asaad ◽  
...  

Abstract. Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as −4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > −10 °C and the specific conditions under which they can influence cloud glaciation need to be further evaluated so as to understand how evolutionary processes could have positively selected for INA.


Sign in / Sign up

Export Citation Format

Share Document