scholarly journals Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

2014 ◽  
Vol 14 (23) ◽  
pp. 12781-12801 ◽  
Author(s):  
K. P. Wyche ◽  
A. C. Ryan ◽  
C. N. Hewitt ◽  
M. R. Alfarra ◽  
G. McFiggans ◽  
...  

Abstract. Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65–89%, volatile organic compound-to-NOx or VOC / NOx ~3–9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26–39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally isoprene-emitting plants was less than would be expected from published single-VOC experiments, if co-emitted species were solely responsible for the final SOA mass. Interpretation of the results obtained from the fig data sets leaves room for a potential role for isoprene in inhibiting SOA formation under certain ambient atmospheric conditions, although instrumental and experimental constraints impose a level of caution in the interpretation of the results. Concomitant gas- and aerosol-phase composition measurements also provide a detailed overview of numerous key oxidation mechanisms at work within the systems studied, and their combined analysis provides insight into the nature of the SOA formed.

2014 ◽  
Vol 14 (10) ◽  
pp. 14291-14349 ◽  
Author(s):  
K. P. Wyche ◽  
A. C. Ryan ◽  
C. N. Hewitt ◽  
M. R. Alfarra ◽  
G. McFiggans ◽  
...  

Abstract. Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photooxidation under a range of controlled conditions (RH ∼65–89%, VOC/NOx ∼3–9 and NOx ∼2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line, chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene, but low isoprene emitter, and its emissions were observed to produce measureable amounts of SOA via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26–39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e., in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photooxidation products of the minor VOCs co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally-isoprene emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally-isoprene-emitting plants, was less than would be expected from published single-VOC experiments, if co-emitted species were solely responsible for the final SOA mass. Interpretation of the results obtained from the fig data sets, leaves room for a potential role for isoprene in inhibiting SOA formation under certain ambient atmospheric conditions, although instrumental and experimental constraints impose a level of caution in the interpretation of the results. Concomitant gas and aerosol phase composition measurements also provide a detailed overview of numerous key oxidation mechanisms at work within the systems studied and their combined analysis provides insight into the nature of the SOA formed.


2011 ◽  
Vol 11 (12) ◽  
pp. 5917-5929 ◽  
Author(s):  
J. F. Hamilton ◽  
M. Rami Alfarra ◽  
K. P. Wyche ◽  
M. W. Ward ◽  
A. C. Lewis ◽  
...  

Abstract. The use of β-caryophyllene secondary organic aerosol particles as seeds for smog chamber simulations has been investigated. A series of experiments were carried out in the Manchester photochemical chamber as part of the Aerosol Coupling in the Earth System (ACES) project to study the effect of seed particles on the formation of secondary organic aerosol (SOA) from limonene photo-oxidation. Rather than use a conventional seed aerosol containing ammonium sulfate or diesel particles, a method was developed to use in-situ chamber generated seed particles from β-caryophyllene photo-oxidation, which were then diluted to a desired mass loading (in this case 4–13 μg m−3). Limonene was then introduced into the chamber and oxidised, with the formation of SOA seen as a growth in the size of oxidised organic seed particles from 150 to 325 nm mean diameter. The effect of the partitioning of limonene oxidation products onto the seed aerosol was assessed using aerosol mass spectrometry during the experiment and the percentage of m/z 44, an indicator of degree of oxidation, increased from around 5 to 8 %. The hygroscopicity of the aerosol also changed, with the growth factor for 200 nm particles increasing from less than 1.05 to 1.25 at 90 % RH. The detailed chemical composition of the limonene SOA could be extracted from the complex β-caryophyllene matrix using two-dimensional gas chromatography (GC × GC) and liquid chromatography coupled to mass spectrometry. High resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) was used to determine exact molecular formulae of the seed and the limonene modified aerosol. The average O:C ratio was seen to increase from 0.32 to 0.37 after limonene oxidation products had condensed onto the organic seed.


2010 ◽  
Vol 10 (10) ◽  
pp. 25117-25151
Author(s):  
J. F. Hamilton ◽  
M. Rami Alfarra ◽  
K. P. Wyche ◽  
M. W. Ward ◽  
A. C. Lewis ◽  
...  

Abstract. The use of β-caryophyllene secondary organic aerosol particles as seeds for smog chamber simulations has been investigated. A series of experiments were carried out in the Manchester photochemical chamber as part of the Aerosol Coupling in the Earth System (ACES) project to study the effect of seed particles on the formation of secondary organic aerosol (SOA) from limonene photo-oxidation. Rather than use a conventional seed aerosol containing ammonium sulphate or diesel particles, a method was developed to use in situ chamber generated seed particles from β-caryophyllene photo-oxidation, which were then diluted to a desired mass loading (in this case 4–13 μg m-3). Limonene was then introduced into the chamber and oxidised, with the formation of SOA seen as a growth in the size of oxidised organic seed particles from 150 to 325 nm mean diameter. The effect of the partitioning of limonene oxidation products onto the seed aerosol was assessed using aerosol mass spectrometry during the experiment and the percentage of m/z 44, an indicator of degree of oxidation, increased from around 5 to 8%. The hygroscopicity of the aerosol also changed, with the growth factor for 200 nm particles increasing from less than 1.05 to 1.25 at 90% RH. The detailed chemical composition of the limonene SOA could be extracted from the complex β-caryophyllene matrix using two-dimensional gas chromatography (GC×GC) and liquid chromatography coupled to mass spectrometry. High resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) was used to determine exact molecular formulae of the seed and the limonene modified aerosol. The average O:C ratio was seen to increase from 0.32 to 0.37 after limonene oxidation products had condensed onto the organic seed.


2016 ◽  
Author(s):  
Giancarlo Ciarelli ◽  
Imad El Haddad ◽  
Emily Bruns ◽  
Sebnem Aksoyoglu ◽  
Ottmar Möhler ◽  
...  

Abstract. Semi-volatile and intermediate volatility organic compounds (SVOCs, IVOCs) are not included in the current non-methane volatile organic compounds (NMVOCs) emission inventories but may be important for the formation of secondary organic aerosol (SOA). In this study, novel wood combustion aging experiments performed at different temperatures (263 K and 288 K) in a ~7 m3 smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol-chemistry box model simulations with unprecedented measurements of nontraditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). In so-doing, we are able to observationally-constrain the amounts of different NTVOCs aerosol precursors (in the model) relative to low-volatility and semi-volatile primary organic material (OMsv) which is partitioned based on current published volatility distribution data. By comparing the NTVOCs/OMsv ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30,000 box model simulations were performed to retrieve the combination of parameters that fit best the observed organic aerosol mass and O:C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O:C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ~4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 hours of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10–11 cm3 molec−1 s−1 to 4.0 × 10–11 cm3 molec−1 s−1. The average enthalpy of vaporization of SOA surrogates was determined to be between 55,000 J mol−1 and 35,000 J mol−1 which implies a yield increase of 0.03–0.06 % K−1 with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass burning aerosols.


2012 ◽  
Vol 12 (21) ◽  
pp. 10125-10143 ◽  
Author(s):  
K. A. Pratt ◽  
L. H. Mielke ◽  
P. B. Shepson ◽  
A. M. Bryan ◽  
A. L. Steiner ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) can react in the atmosphere to form organic nitrates, which serve as NOx (NO + NO2) reservoirs, impacting ozone and secondary organic aerosol production, the oxidative capacity of the atmosphere, and nitrogen availability to ecosystems. To examine the contributions of biogenic emissions and the formation and fate of organic nitrates in a forest environment, we simulated the oxidation of 57 individual BVOCs emitted from a rural mixed forest in northern Michigan. Key BVOC-oxidant reactions were identified for future laboratory and field investigations into reaction rate constants, yields, and speciation of oxidation products. Of the total simulated organic nitrates, monoterpenes contributed ~70% in the early morning at ~12 m above the forest canopy when isoprene emissions were low. In the afternoon, when vertical mixing and isoprene nitrate production were highest, the simulated contribution of isoprene-derived organic nitrates was greater than 90% at all altitudes, with the concentration of secondary isoprene nitrates increasing with altitude. Notably, reaction of isoprene with NO3 leading to isoprene nitrate formation was found to be significant (~8% of primary organic nitrate production) during the daytime, and monoterpene reactions with NO3 were simulated to comprise up to ~83% of primary organic nitrate production at night. Lastly, forest succession, wherein aspen trees are being replaced by pine and maple trees, was predicted to lead to increased afternoon concentrations of monoterpene-derived organic nitrates. This further underscores the need to understand the formation and fate of these species, which have different chemical pathways and oxidation products compared to isoprene-derived organic nitrates and can lead to secondary organic aerosol formation.


2012 ◽  
Vol 12 (7) ◽  
pp. 17031-17086 ◽  
Author(s):  
K. A. Pratt ◽  
L. H. Mielke ◽  
P. B. Shepson ◽  
A. M. Bryan ◽  
A. L. Steiner ◽  
...  

Abstract. Biogenic volatile organic compounds (BVOCs) can react in the atmosphere to form organic nitrates, which serve as NOx (NO + NO2) reservoirs, impacting ozone and secondary organic aerosol production, the oxidative capacity of the atmosphere, and nitrogen availability to ecosystems. To examine the contributions of biogenic emissions and the formation and fate of organic nitrates in a forest environment, we simulated the oxidation of 57 individual BVOCs emitted from a rural mixed forest in Northern Michigan. Of the total simulated organic nitrates, monoterpenes contributed ~70% in the early morning at ~12 m above the forest canopy when isoprene emissions were low. In the afternoon, when vertical mixing and isoprene nitrate production were highest, the simulated contribution of isoprene-derived organic nitrates was greater than 90% at all altitudes, with the concentration of secondary isoprene nitrates increasing with altitude. Key BVOC-oxidant reactions were identified for future laboratory and field investigations into reaction rate constants, yields, and speciation of oxidation products. Forest succession, wherein aspen trees are being replaced by pine and maple trees, was predicted to lead to increased afternoon concentrations of monoterpene-derived organic nitrates. This further underscores the need to understand the formation and fate of these species, which have different chemical pathways and oxidation products compared to isoprene-derived organic nitrates and can lead to secondary organic aerosol formation.


Author(s):  
Hind A. A. Al-Abadleh

Extensive research has been done on the processes that lead to the formation of secondary organic aerosol (SOA) including atmospheric oxidation of volatile organic compounds (VOCs) from biogenic and anthropogenic...


2010 ◽  
Vol 10 (2) ◽  
pp. 3861-3892 ◽  
Author(s):  
J. G. Murphy ◽  
D. E. Oram ◽  
C. E. Reeves

Abstract. In this paper we describe measurements of volatile organic compounds (VOCs) made using a Proton Transfer Reaction Mass Spectrometer (PTR-MS) aboard the UK Facility for Atmospheric Airborne Measurements during the African Monsoon Multidisciplinary Analyses (AMMA) campaign. Observations were made during approximately 85 h of flying time between 17 July and 17 August 2006, above an area between 4° N and 18° N and 3° W and 4° E, encompassing ocean, mosaic forest, and the Sahel desert. High time resolution observations of counts at mass to charge (m/z) ratios of 42, 59, 69, 71, and 79 were used to calculate mixing ratios of acetonitrile, acetone, isoprene, the sum of methyl vinyl ketone and methacrolein, and benzene, respectively using laboratory-derived humidity-dependent calibration factors. Strong spatial associations between vegetation and isoprene and its oxidation products were observed in the boundary layer, consistent with biogenic emissions followed by rapid atmospheric oxidation. Acetonitrile, benzene, and acetone were all enhanced in airmasses which had been heavily influenced by biomass burning. Benzene and acetone were also elevated in airmasses with urban influence from cities such as Lagos, Cotonou, and Niamey. The observations provide evidence that both deep convection and mixing associated with fair-weather cumulus were responsible for vertical redistribution of VOCs emitted from the surface. Profiles over the ocean showed a depletion of acetone in the marine boundary layer, but no significant decrease for acetonitrile.


Sign in / Sign up

Export Citation Format

Share Document