scholarly journals Constraining a hybrid volatility basis set model for aging of wood burning emissions using smog chamber experiments

Author(s):  
Giancarlo Ciarelli ◽  
Imad El Haddad ◽  
Emily Bruns ◽  
Sebnem Aksoyoglu ◽  
Ottmar Möhler ◽  
...  

Abstract. Semi-volatile and intermediate volatility organic compounds (SVOCs, IVOCs) are not included in the current non-methane volatile organic compounds (NMVOCs) emission inventories but may be important for the formation of secondary organic aerosol (SOA). In this study, novel wood combustion aging experiments performed at different temperatures (263 K and 288 K) in a ~7 m3 smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol-chemistry box model simulations with unprecedented measurements of nontraditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). In so-doing, we are able to observationally-constrain the amounts of different NTVOCs aerosol precursors (in the model) relative to low-volatility and semi-volatile primary organic material (OMsv) which is partitioned based on current published volatility distribution data. By comparing the NTVOCs/OMsv ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30,000 box model simulations were performed to retrieve the combination of parameters that fit best the observed organic aerosol mass and O:C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O:C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ~4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 hours of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10–11 cm3 molec−1 s−1 to 4.0 × 10–11 cm3 molec−1 s−1. The average enthalpy of vaporization of SOA surrogates was determined to be between 55,000 J mol−1 and 35,000 J mol−1 which implies a yield increase of 0.03–0.06 % K−1 with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass burning aerosols.

2017 ◽  
Vol 10 (6) ◽  
pp. 2303-2320 ◽  
Author(s):  
Giancarlo Ciarelli ◽  
Imad El Haddad ◽  
Emily Bruns ◽  
Sebnem Aksoyoglu ◽  
Ottmar Möhler ◽  
...  

Abstract. In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ∼ 7 m3 smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol–chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv), which is partitioned based on current published volatility distribution data. By comparing the NTVOC ∕ OMsv ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ∼ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10−11 to 4. 0 × 10−11 cm3 molec−1 s−1. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol−1, which implies a yield increase of 0.03–0.06 % K−1 with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols.


2018 ◽  
Author(s):  
Mounir Chrit ◽  
Karine Sartelet ◽  
Jean Sciare ◽  
Marwa Majdi ◽  
José Nicolas ◽  
...  

Abstract. Organic aerosols are measured at a remote site (Ersa) on Corsica Cape in the northwestern Mediterranean basin during the Chemistry-Aerosol Mediterranean Experiment (CharMEx) winter campaign of 2014, when high organic concentrations from anthropogenic origin are observed. This work aims at representing the observed organic aerosol concentrations and properties (oxidation state) using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA) formation. Because intermediate/semi-volatile organic compounds (I/S-VOC) are the main precursors of SOA at Ersa during the winter 2014, different parameterizations to represent the emission and ageing of I/S-VOC were implemented in the chemistry-transport model of the air-quality platform Polyphemus (different volatility distribution emissions, single-step oxidation vs multi-step oxidation within a Volatility Basis Set framework, inclusion of non-traditional volatile organic compounds NTVOC). Simulations using the different parameterizations are compared to each other and to the measurements (concentration and oxidation state). The high observed organic concentrations are well reproduced whatever the parameterizations. They are slightly under-estimated with most parameterizations, but they are slightly over-estimated when the ageing of NTVOC is taken into account. The volatility distribution at emissions influences more strongly the concentrations than the choice of the parameterization that may be used for ageing (single-step oxidation vs multi-step oxidation), stressing the importance of an accurate characterization of emissions. Assuming the volatility distribution of sectors other than residential heating to be the same as residential heating may lead to a strong under-estimation of organic concentrations. The observed organic oxidation and oxygenation states are strongly under-estimated in all simulations, even when a recently developed parameterization for modeling the ageing of I/S-VOC from residential heating is used. This suggests that uncertainties in the ageing of I/S-VOC emissions remain to be elucidated, with a potential role of organic nitrate from anthropogenic precursors and highly oxygenated organic molecules.


2018 ◽  
Vol 18 (24) ◽  
pp. 18079-18100 ◽  
Author(s):  
Mounir Chrit ◽  
Karine Sartelet ◽  
Jean Sciare ◽  
Marwa Majdi ◽  
José Nicolas ◽  
...  

Abstract. Organic aerosols are measured at a remote site (Ersa) on the cape of Corsica in the northwestern Mediterranean basin during the winter campaign of 2014 of the CHemistry and AeRosols Mediterranean EXperiment (CharMEx), when high organic concentrations from anthropogenic origins are observed. This work aims to represent the observed organic aerosol concentrations and properties (oxidation state) using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA) formation. Because intermediate and semi-volatile organic compounds (I/S-VOCs) are the main precursors of SOAs at Ersa during winter 2014, different parameterizations to represent the emission and aging of I/S-VOCs were implemented in the chemistry-transport model of Polyphemus (different volatility distribution emissions and single-step oxidation vs multi-step oxidation within a volatility basis set – VBS – framework, inclusion of non-traditional volatile organic compounds – NTVOCs). Simulations using the different parameterizations are compared to each other and to the measurements (concentration and oxidation state). The highly observed organic concentrations are well reproduced in all the parameterizations. They are slightly underestimated in most parameterizations. The volatility distribution at emissions influences the concentrations more strongly than the choice of the parameterization that may be used for aging (single-step oxidation vs multi-step oxidation), stressing the importance of an accurate characterization of emissions. Assuming the volatility distribution of sectors other than residential heating to be the same as residential heating may lead to a strong underestimation of organic concentrations. The observed organic oxidation and oxygenation states are strongly underestimated in all simulations, even when multigenerational aging of I/S-VOCs from all sectors is modeled. This suggests that uncertainties in the emissions and aging of I/S-VOC emissions remain to be elucidated, with a potential role of formation of organic nitrate and low-volatility highly oxygenated organic molecules.


2015 ◽  
Vol 15 (6) ◽  
pp. 9107-9172 ◽  
Author(s):  
I. B. Konovalov ◽  
M. Beekmann ◽  
E. V. Berezin ◽  
H. Petetin ◽  
T. Mielonen ◽  
...  

Abstract. Chemistry transport models (CTMs) are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB); this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidating possible reasons for discrepancies between them, which, "by default", are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data regarding atmospheric evolution of BB aerosol and by using the volatility basis set (VBS) approach to organic aerosol modeling along with a "conventional" approach, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs) into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. BB emissions of primary aerosol components were constrained with the PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO) measured in Finland (in the city of Kuopio), nearly 1000 km downstream of the fire emission sources. It is found that while the conventional approach (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile) strongly underestimates values of ΔPM10/ΔCO observed in Kuopio (by almost a factor of two), the VBS approach is capable to bring the simulations to a reasonable agreement with the ground measurements both in Moscow and in Kuopio. Using the VBS instead of the conventional approach is also found to result in a major improvement of the agreement of simulations and satellite measurements of aerosol optical depth, as well as in considerable changes in predicted aerosol composition and top-down BB aerosol emission estimates derived from AOD measurements.


2015 ◽  
Vol 15 (23) ◽  
pp. 13269-13297 ◽  
Author(s):  
I. B. Konovalov ◽  
M. Beekmann ◽  
E. V. Berezin ◽  
H. Petetin ◽  
T. Mielonen ◽  
...  

Abstract. Chemistry transport models (CTMs) are an indispensable tool for studying and predicting atmospheric and climate effects associated with carbonaceous aerosol from open biomass burning (BB); this type of aerosol is known to contribute significantly to both global radiative forcing and to episodes of air pollution in regions affected by wildfires. Improving model performance requires systematic comparison of simulation results with measurements of BB aerosol and elucidation of possible reasons for discrepancies between them, which, by default, are frequently attributed in the literature to uncertainties in emission data. Based on published laboratory data on the atmospheric evolution of BB aerosol and using the volatility basis set (VBS) framework for organic aerosol modeling, we examined the importance of taking gas-particle partitioning and oxidation of semi-volatile organic compounds (SVOCs) into account in simulations of the mesoscale evolution of smoke plumes from intense wildfires that occurred in western Russia in 2010. Biomass burning emissions of primary aerosol components were constrained with PM10 and CO data from the air pollution monitoring network in the Moscow region. The results of the simulations performed with the CHIMERE CTM were evaluated by considering, in particular, the ratio of smoke-related enhancements in PM10 and CO concentrations (ΔPM10 and ΔCO) measured in Finland (in the city of Kuopio), nearly 1000 km downstream of the fire emission sources. It is found that while the simulations based on a "conventional" approach to BB aerosol modeling (disregarding oxidation of SVOCs and assuming organic aerosol material to be non-volatile) strongly underestimated values of ΔPM10/ΔCO observed in Kuopio (by a factor of 2), employing the "advanced" representation of atmospheric processing of organic aerosol material resulted in bringing the simulations to a much closer agreement with the ground measurements. Furthermore, taking gas-particle partitioning and oxidation of SVOCs into account is found to result in a major improvement of the agreement of simulations and satellite measurements of aerosol optical depth, as well as in considerable changes in predicted aerosol composition and top-down BB aerosol emission estimates derived from AOD measurements.


2018 ◽  
Vol 18 (19) ◽  
pp. 13813-13838 ◽  
Author(s):  
Sailaja Eluri ◽  
Christopher D. Cappa ◽  
Beth Friedman ◽  
Delphine K. Farmer ◽  
Shantanu H. Jathar

Abstract. Laboratory-based studies have shown that combustion sources emit volatile organic compounds that can be photooxidized in the atmosphere to form secondary organic aerosol (SOA). In some cases, this SOA can exceed direct emissions of primary organic aerosol (POA). Jathar et al. (2017a) recently reported on experiments that used an oxidation flow reactor (OFR) to measure the photochemical production of SOA from a diesel engine operated at two different engine loads (idle, load), two fuel types (diesel, biodiesel), and two aftertreatment configurations (with and without an oxidation catalyst and particle filter). In this work, we used two different SOA models, the Volatility Basis Set (VBS) model and the Statistical Oxidation Model (SOM), to simulate the formation and composition of SOA for those experiments. Leveraging recent laboratory-based parameterizations, both frameworks accounted for a semi-volatile and reactive POA; SOA production from semi-volatile, intermediate-volatility, and volatile organic compounds (SVOC, IVOC and VOC); NOx-dependent parameterizations; multigenerational gas-phase chemistry; and kinetic gas–particle partitioning. Both frameworks demonstrated that for model predictions of SOA mass to agree with measurements across all engine load–fuel–aftertreatment combinations, it was necessary to model the kinetically limited gas–particle partitioning in OFRs and account for SOA formation from IVOCs, which were on average found to account for 70 % of the model-predicted SOA. Accounting for IVOCs, however, resulted in an average underprediction of 28 % for OA atomic O : C ratios. Model predictions of the gas-phase organic compounds (resolved in carbon and oxygen space) from the SOM compared favorably to gas-phase measurements from a chemical ionization mass spectrometer (CIMS), substantiating the semi-explicit chemistry captured by the SOM. Model–measurement comparisons were improved on using SOA parameterizations corrected for vapor wall loss. As OFRs are increasingly used to study SOA formation and evolution in laboratory and field environments, models such as those developed in this work can be used to interpret the OFR data.


2014 ◽  
Vol 14 (23) ◽  
pp. 12781-12801 ◽  
Author(s):  
K. P. Wyche ◽  
A. C. Ryan ◽  
C. N. Hewitt ◽  
M. R. Alfarra ◽  
G. McFiggans ◽  
...  

Abstract. Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65–89%, volatile organic compound-to-NOx or VOC / NOx ~3–9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26–39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally isoprene-emitting plants was less than would be expected from published single-VOC experiments, if co-emitted species were solely responsible for the final SOA mass. Interpretation of the results obtained from the fig data sets leaves room for a potential role for isoprene in inhibiting SOA formation under certain ambient atmospheric conditions, although instrumental and experimental constraints impose a level of caution in the interpretation of the results. Concomitant gas- and aerosol-phase composition measurements also provide a detailed overview of numerous key oxidation mechanisms at work within the systems studied, and their combined analysis provides insight into the nature of the SOA formed.


2014 ◽  
Vol 14 (10) ◽  
pp. 14291-14349 ◽  
Author(s):  
K. P. Wyche ◽  
A. C. Ryan ◽  
C. N. Hewitt ◽  
M. R. Alfarra ◽  
G. McFiggans ◽  
...  

Abstract. Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photooxidation under a range of controlled conditions (RH ∼65–89%, VOC/NOx ∼3–9 and NOx ∼2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line, chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene, but low isoprene emitter, and its emissions were observed to produce measureable amounts of SOA via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26–39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e., in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photooxidation products of the minor VOCs co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally-isoprene emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally-isoprene-emitting plants, was less than would be expected from published single-VOC experiments, if co-emitted species were solely responsible for the final SOA mass. Interpretation of the results obtained from the fig data sets, leaves room for a potential role for isoprene in inhibiting SOA formation under certain ambient atmospheric conditions, although instrumental and experimental constraints impose a level of caution in the interpretation of the results. Concomitant gas and aerosol phase composition measurements also provide a detailed overview of numerous key oxidation mechanisms at work within the systems studied and their combined analysis provides insight into the nature of the SOA formed.


2017 ◽  
Author(s):  
Sailaja Eluri ◽  
Christopher D. Cappa ◽  
Beth Friedman ◽  
Delphine K. Farmer ◽  
Shantanu H. Jathar

Abstract. Laboratory-based studies have shown that combustion sources emit volatile organic compounds that can be photo-oxidized in the atmosphere to form secondary organic aerosol (SOA). In some cases, this SOA can exceed direct emissions of primary organic aerosol (POA). Jathar et al. (2017) recently reported on experiments that used an oxidation flow reactor (OFR) to measure the photochemical production of SOA from a diesel engine operated at two different engine loads (idle, load), two fuel types (diesel, biodiesel) and two aftertreatment configurations (with and without an oxidation catalyst and particle filter). In this work, we used two different SOA models, the volatility basis set (VBS) model and the statistical oxidation model (SOM), to simulate the formation and composition of SOA for those experiments. Leveraging recent laboratory-based parameterizations, both frameworks accounted for a semi-volatile and reactive POA; SOA production from semi-volatile, intermediate-volatility and volatile organic compounds (SVOC, IVOC and VOC); multigenerational gas-phase chemistry; and kinetic gas/particle partitioning. Both frameworks demonstrated that for model predictions of SOA mass to agree with measurements across all engine load-fuel-aftertreatment combinations, it was necessary to model the kinetically-limited gas-particle partitioning in OFRs as well as account for SOA formation from IVOCs, which were found to account for more than 90 % of the model-predicted SOA. Accounting for IVOCs however resulted in an underprediction of a factor of two for OA atomic O : C ratios. Model predictions of the gas-phase organic compounds (resolved in carbon and oxygen space) from the SOM compared favorably to gas-phase measurements from a Chemical Ionization Mass Spectrometer (CIMS), substantiating the semi-explicit chemistry captured by the SOM. Model-measurement comparisons were improved on using vapor wall-loss corrected SOA parameterizations. As OFRs are increasingly used to study SOA formation and evolution in laboratory and field environments, models such as those developed in this work can be used to interpret the OFR data.


Sign in / Sign up

Export Citation Format

Share Document