scholarly journals The role of low volatile organics on secondary organic aerosol formation

2014 ◽  
Vol 14 (3) ◽  
pp. 1689-1700 ◽  
Author(s):  
H. Kokkola ◽  
P. Yli-Pirilä ◽  
M. Vesterinen ◽  
H. Korhonen ◽  
H. Keskinen ◽  
...  

Abstract. Large-scale atmospheric models, which typically describe secondary organic aerosol (SOA) formation based on chamber experiments, tend to systematically underestimate observed organic aerosol burdens. Since SOA constitutes a significant fraction of atmospheric aerosol, this discrepancy translates into an underestimation of SOA contribution to radiative forcing of atmospheric aerosol. Here we show that the underestimation of SOA yields can be partly explained by wall losses of SOA forming compounds during chamber experiments. We present a chamber experiment where α-pinene and ozone are injected into a Teflon chamber. When these two compounds react, we observe rapid formation and growth of new particles. Theoretical analysis of this formation and growth event indicates rapid formation of oxidized volatile organic compounds (OVOC) of very low volatility in the chamber. If these oxidized organic compounds form in the gas phase, their wall losses will have significant implications on their partitioning between the gas and particle phase. Although these OVOCs of very low volatility contribute to the growth of new particles, their mass will almost completely be depleted to the chamber walls during the experiment, while the depletion of OVOCs of higher volatilities is less efficient. According to our model simulations, the volatilities of OVOC contributing to the new particle formation event can be of the order of 10−5 μg m−3.

2013 ◽  
Vol 13 (6) ◽  
pp. 14613-14635 ◽  
Author(s):  
H. Kokkola ◽  
P. Yli-Pirilä ◽  
M. Vesterinen ◽  
H. Korhonen ◽  
H. Keskinen ◽  
...  

Abstract. Large-scale atmospheric models, which typically describe secondary organic aerosol (SOA) formation based on chamber experiments, tend to systematically underestimate observed organic aerosol burdens. Since SOA constitutes a significant fraction of atmospheric aerosol, this discrepancy translates to an underestimation of SOA contribution to climate. Here we show that the underestimation of SOA yields can partly be explained by wall-losses of SOA forming compounds during chamber experiments. We present a chamber experiment where α-pinene and ozone are injected in a Teflon chamber. When these two compounds react, we observe rapid formation and growth of new particles. Theoretical analysis of this formation and growth event indicates rapid formation of oxidized organic compounds (OVOC) of very low volatility in the chamber. Although these OVOCs of very low volatility contribute to the growth of new particles, their mass will almost completely be depleted to the chamber walls during the experiment while the depletion of OVOCs of higher volatilities is less efficient. According to our model simulations, the volatilities of OVOC contributing to the new particle formation event are of the order of 10−5 μg m−3.


2020 ◽  
Vol 22 (7) ◽  
pp. 1461-1474 ◽  
Author(s):  
Yicong He ◽  
Brandon King ◽  
Matson Pothier ◽  
Liam Lewane ◽  
Ali Akherati ◽  
...  

With an ongoing interest in displacing petroleum-based sources of energy with biofuels, we measure and model the formation and composition of secondary organic aerosol (SOA) from organic compounds present in biofuels.


2015 ◽  
Vol 15 (21) ◽  
pp. 30409-30471 ◽  
Author(s):  
B. B. Palm ◽  
P. Campuzano-Jost ◽  
A. M. Ortega ◽  
D. A. Day ◽  
L. Kaser ◽  
...  

Abstract. Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 μg m-3 when LVOC fate corrected) compared to daytime (average 1 μg m-3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. Several recently-developed instruments quantified ambient semi- and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a PTR-TOF-MS. An SOA yield of 24–80 % from those compounds can explain the observed SOA, suggesting that these typically unmeasured S/IVOCs play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Our measurements help clarify the magnitude of SOA formation in forested environments, and demonstrate methods for interpretation of ambient OFR measurements.


2019 ◽  
Author(s):  
Nicolás Zabalegui ◽  
Malena Manzi ◽  
Antoine Depoorter ◽  
Nathalie Hayeck ◽  
Marie Roveretto ◽  
...  

Abstract. A transmission mode-direct analysis in real time-quadrupole time of flight-mass spectrometry (TM-DART-QTOF-MS)-based analytical method coupled to multivariate statistical analysis was developed to interrogate lipophilic compounds in seawater samples without the need of desalinization. An untargeted metabolomics approach addressed here as seaomics was successfully implemented to discriminate sea surface microlayer (SML) from underlying water (ULW) samples (n = 22, 10 paired samples) collected during a field campaign at the Cape Verde islands in September–October 2017. A panel of 11 ionic species detected in all samples allowed sample class discrimination by means of supervised multivariate statistical models. Tentative identification of these species suggest that saturated fatty acids, peptides, fatty alcohols, halogenated compounds, and oxygenated boron-containing organic compounds may be involved in water-air transfer processes and in photochemical reactions at the water-air interface of the ocean. A subset of SML samples (n = 5) were subject to on-site experiments during the campaign using a lab-to-the-field approach to test their secondary organic aerosol (SOA) formation potency. Results from these experiments and the analytical seaomics strategy provide a proof of concept that organic compounds play a key role in aerosol formation processes at the water/air interface.


2021 ◽  
Vol 21 (4) ◽  
pp. 2569-2583
Author(s):  
Rongzhi Tang ◽  
Quanyang Lu ◽  
Song Guo ◽  
Hui Wang ◽  
Kai Song ◽  
...  

Abstract. In the present work, we performed chassis dynamometer experiments to investigate the emissions and secondary organic aerosol (SOA) formation potential of intermediate-volatility organic compounds (IVOCs) from an on-road Chinese gasoline vehicle. High IVOC emission factors (EFs) and distinct volatility distribution were recognized. The IVOC EFs for the China V vehicle ranged from 12.1 to 226.3 mg per kilogram fuel, with a median value of 83.7 mg per kilogram fuel, which was higher than that from US vehicles. Besides, a large discrepancy in volatility distribution and chemical composition of IVOCs from Chinese gasoline vehicle exhaust was discovered, with larger contributions of B14–B16 compounds (retention time bins corresponding to C14-C16 n-alkanes) and a higher percentage of n-alkanes. Further we investigated the possible reasons that influence the IVOC EFs and volatility distribution and found that fuel type, starting mode, operating cycles and acceleration rates did have an impact on the IVOC EF. When using E10 (ethanol volume ratio of 10 %, v/v) as fuel, the IVOC EF of the tested vehicle was lower than that using commercial China standard V fuel. The average IVOC-to-THC (total hydrocarbon) ratios for gasoline-fueled and E10-fueled gasoline vehicles were 0.07±0.01 and 0.11±0.02, respectively. Cold-start operation had higher IVOC EFs than hot-start operation. The China Light-Duty Vehicle Test Cycle (CLTC) produced 70 % higher IVOCs than those from the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). We found that the tested vehicle emitted more IVOCs at lower acceleration rates, which leads to high EFs under CLTC. The only factor that may influence the volatility distribution and compound composition is the engine aftertreatment system, which has compound and volatility selectivity in exhaust purification. These distinct characteristics in EFs and volatility may result in higher SOA formation potential in China. Using published yield data and a surrogate equivalent method, we estimated SOA formation under different OA (organic aerosol) loading and NOx conditions. Results showed that under low- and high-NOx conditions at different OA loadings, IVOCs contributed more than 80 % of the predicted SOA. Furthermore, we built up a parameterization method to simply estimate the vehicular SOA based on our bottom-up measurement of VOCs (volatile organic compounds) and IVOCs, which would provide another dimension of information when considering the vehicular contribution to the ambient OA. Our results indicate that vehicular IVOCs contribute significantly to SOA, implying the importance of reducing IVOCs when making air pollution controlling policies in urban areas of China.


Sign in / Sign up

Export Citation Format

Share Document