scholarly journals Cloud photogrammetry with dense stereo for fisheye cameras

2016 ◽  
Vol 16 (22) ◽  
pp. 14231-14248 ◽  
Author(s):  
Christoph Beekmans ◽  
Johannes Schneider ◽  
Thomas Läbe ◽  
Martin Lennefer ◽  
Cyrill Stachniss ◽  
...  

Abstract. We present a novel approach for dense 3-D cloud reconstruction above an area of 10 × 10 km2 using two hemispheric sky imagers with fisheye lenses in a stereo setup. We examine an epipolar rectification model designed for fisheye cameras, which allows the use of efficient out-of-the-box dense matching algorithms designed for classical pinhole-type cameras to search for correspondence information at every pixel. The resulting dense point cloud allows to recover a detailed and more complete cloud morphology compared to previous approaches that employed sparse feature-based stereo or assumed geometric constraints on the cloud field. Our approach is very efficient and can be fully automated. From the obtained 3-D shapes, cloud dynamics, size, motion, type and spacing can be derived, and used for radiation closure under cloudy conditions, for example. Fisheye lenses follow a different projection function than classical pinhole-type cameras and provide a large field of view with a single image. However, the computation of dense 3-D information is more complicated and standard implementations for dense 3-D stereo reconstruction cannot be easily applied. Together with an appropriate camera calibration, which includes internal camera geometry, global position and orientation of the stereo camera pair, we use the correspondence information from the stereo matching for dense 3-D stereo reconstruction of clouds located around the cameras. We implement and evaluate the proposed approach using real world data and present two case studies. In the first case, we validate the quality and accuracy of the method by comparing the stereo reconstruction of a stratocumulus layer with reflectivity observations measured by a cloud radar and the cloud-base height estimated from a Lidar-ceilometer. The second case analyzes a rapid cumulus evolution in the presence of strong wind shear.

2016 ◽  
Author(s):  
Christoph Beekmans ◽  
Johannes Schneider ◽  
Thomas Läbe ◽  
Cyrill Stachniss ◽  
Clemens Simmer

Abstract. In this paper, we present our approach for dense 3D cloud reconstruction using two hemispheric sky imagers with fisheye lenses in a stereo setup. Fisheye lenses follow a different projection function than classical pinhole-type cameras, which provide a large field of view with a single image, but also renders the computation of dense 3D information more complicated, such that we cannot rely entirely on standard implementations for dense 3D stereo reconstruction. In this work, we examine the epipolar rectification model, which allows the use of dense matching algorithms designed for classical perspective cameras to search for disparity information at every pixel. Together with an appropriate camera calibration, which includes internal camera geometry and global position and orientation of the stereo camera pair, we can use the disparity information for dense 3D stereo reconstruction of the a cloud and thus estimate its shape. From the obtained 3D shapes, cloud dynamics, size, motion, type and spacing can be derived and used e.g. for radiation closure under cloudy conditions. We implemented and evaluated the proposed approach using real world data and present two case studies. In the first case, we validate the quality and accuracy of the method by comparing the stereo reconstruction of a stratocumulus layer with the reflectivity observations measured by a cloud radar and the cloud base height estimated from a Lidar-ceilometer. The second case analyzes a rapid cumulus convection in the presence of strong wind shear.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Robert J. Francis ◽  
Gillian Robb ◽  
Lee McCann ◽  
Bhagwati Khatri ◽  
James Keeble ◽  
...  

AbstractTuberculosis (TB) preclinical testing relies on in vivo models including the mouse aerosol challenge model. The only method of determining colony morphometrics of TB infection in a tissue in situ is two-dimensional (2D) histopathology. 2D measurements consider heterogeneity within a single observable section but not above and below, which could contain critical information. Here we describe a novel approach, using optical clearing and a novel staining procedure with confocal microscopy and mesoscopy, for three-dimensional (3D) measurement of TB infection within lesions at sub-cellular resolution over a large field of view. We show TB morphometrics can be determined within lesion pathology, and differences in infection with different strains of Mycobacterium tuberculosis. Mesoscopy combined with the novel CUBIC Acid-Fast (CAF) staining procedure enables a quantitative approach to measure TB infection and allows 3D analysis of infection, providing a framework which could be used in the analysis of TB infection in situ.


2007 ◽  
Vol 69 (3) ◽  
pp. S691-S692
Author(s):  
C.C. Lee ◽  
A. Wu ◽  
M. Garg ◽  
S. Mutyala ◽  
S. Kalnicki ◽  
...  
Keyword(s):  

2020 ◽  
Vol 19 (2) ◽  
pp. 21-35
Author(s):  
Ryan Beal ◽  
Timothy J. Norman ◽  
Sarvapali D. Ramchurn

AbstractThis paper outlines a novel approach to optimising teams for Daily Fantasy Sports (DFS) contests. To this end, we propose a number of new models and algorithms to solve the team formation problems posed by DFS. Specifically, we focus on the National Football League (NFL) and predict the performance of real-world players to form the optimal fantasy team using mixed-integer programming. We test our solutions using real-world data-sets from across four seasons (2014-2017). We highlight the advantage that can be gained from using our machine-based methods and show that our solutions outperform existing benchmarks, turning a profit in up to 81.3% of DFS game-weeks over a season.


2020 ◽  
pp. 945-958
Author(s):  
Santosh R. Durugkar ◽  
Ramesh C. Poonia ◽  
Radhakrishna B. Naik

The proposed system focuses on utilizing the available water for a home garden in an effective way. The same approach is applicable to agriculture (large field), as our country's economy depends up on the agriculture. Therefore, agriculture is the backbone of Indian economy. In this paper, the authors have proposed a novel approach priority driven scheduling based irrigation model (for home garden) which supplies optimum and good quality water to the crops. The most important part for such system is Wireless Sensor Network which irrigates the plants. The proposed system will be very useful as it immediately irrigates the plant. In this process, soil moisture values will be sensed and compared to find out the lowest value. It means water will be given immediately to such plants where moisture values are low. Such systems will start new era in agriculture and will prove itself as a major requirement in the future due to many critical factors such as irregularity of monsoon, less availability of water, etc.


2017 ◽  
Vol 19 (4) ◽  
pp. 37-48 ◽  
Author(s):  
Santosh R. Durugkar ◽  
Ramesh C. Poonia ◽  
Radhakrishna B. Naik

The proposed system focuses on utilizing the available water for a home garden in an effective way. The same approach is applicable to agriculture (large field), as our country's economy depends up on the agriculture. Therefore, agriculture is the backbone of Indian economy. In this paper, the authors have proposed a novel approach priority driven scheduling based irrigation model (for home garden) which supplies optimum and good quality water to the crops. The most important part for such system is Wireless Sensor Network which irrigates the plants. The proposed system will be very useful as it immediately irrigates the plant. In this process, soil moisture values will be sensed and compared to find out the lowest value. It means water will be given immediately to such plants where moisture values are low. Such systems will start new era in agriculture and will prove itself as a major requirement in the future due to many critical factors such as irregularity of monsoon, less availability of water, etc.


Author(s):  
Juheng Zhang ◽  
Xiaoping Liu ◽  
Xiao-Bai Li

We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable outcome. It is important for the decision-maker to have a mechanism to deal with such strategic behaviors. We propose a novel approach to handle strategically missing data in regression prediction. The proposed method derives imputation values of strategically missing data based on the Support Vector Regression models. It provides incentives for the data providers to disclose their true information. We show that with the proposed method imputation errors for the missing values are minimized under some reasonable conditions. An experimental study on real-world data demonstrates the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document