scholarly journals Optimising Daily Fantasy Sports Teams with Artificial Intelligence

2020 ◽  
Vol 19 (2) ◽  
pp. 21-35
Author(s):  
Ryan Beal ◽  
Timothy J. Norman ◽  
Sarvapali D. Ramchurn

AbstractThis paper outlines a novel approach to optimising teams for Daily Fantasy Sports (DFS) contests. To this end, we propose a number of new models and algorithms to solve the team formation problems posed by DFS. Specifically, we focus on the National Football League (NFL) and predict the performance of real-world players to form the optimal fantasy team using mixed-integer programming. We test our solutions using real-world data-sets from across four seasons (2014-2017). We highlight the advantage that can be gained from using our machine-based methods and show that our solutions outperform existing benchmarks, turning a profit in up to 81.3% of DFS game-weeks over a season.

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 507
Author(s):  
Piotr Białczak ◽  
Wojciech Mazurczyk

Malicious software utilizes HTTP protocol for communication purposes, creating network traffic that is hard to identify as it blends into the traffic generated by benign applications. To this aim, fingerprinting tools have been developed to help track and identify such traffic by providing a short representation of malicious HTTP requests. However, currently existing tools do not analyze all information included in the HTTP message or analyze it insufficiently. To address these issues, we propose Hfinger, a novel malware HTTP request fingerprinting tool. It extracts information from the parts of the request such as URI, protocol information, headers, and payload, providing a concise request representation that preserves the extracted information in a form interpretable by a human analyst. For the developed solution, we have performed an extensive experimental evaluation using real-world data sets and we also compared Hfinger with the most related and popular existing tools such as FATT, Mercury, and p0f. The conducted effectiveness analysis reveals that on average only 1.85% of requests fingerprinted by Hfinger collide between malware families, what is 8–34 times lower than existing tools. Moreover, unlike these tools, in default mode, Hfinger does not introduce collisions between malware and benign applications and achieves it by increasing the number of fingerprints by at most 3 times. As a result, Hfinger can effectively track and hunt malware by providing more unique fingerprints than other standard tools.


Author(s):  
Martyna Daria Swiatczak

AbstractThis study assesses the extent to which the two main Configurational Comparative Methods (CCMs), i.e. Qualitative Comparative Analysis (QCA) and Coincidence Analysis (CNA), produce different models. It further explains how this non-identity is due to the different algorithms upon which both methods are based, namely QCA’s Quine–McCluskey algorithm and the CNA algorithm. I offer an overview of the fundamental differences between QCA and CNA and demonstrate both underlying algorithms on three data sets of ascending proximity to real-world data. Subsequent simulation studies in scenarios of varying sample sizes and degrees of noise in the data show high overall ratios of non-identity between the QCA parsimonious solution and the CNA atomic solution for varying analytical choices, i.e. different consistency and coverage threshold values and ways to derive QCA’s parsimonious solution. Clarity on the contrasts between the two methods is supposed to enable scholars to make more informed decisions on their methodological approaches, enhance their understanding of what is happening behind the results generated by the software packages, and better navigate the interpretation of results. Clarity on the non-identity between the underlying algorithms and their consequences for the results is supposed to provide a basis for a methodological discussion about which method and which variants thereof are more successful in deriving which search target.


2016 ◽  
Vol 12 (2) ◽  
pp. 126-149 ◽  
Author(s):  
Masoud Mansoury ◽  
Mehdi Shajari

Purpose This paper aims to improve the recommendations performance for cold-start users and controversial items. Collaborative filtering (CF) generates recommendations on the basis of similarity between users. It uses the opinions of similar users to generate the recommendation for an active user. As a similarity model or a neighbor selection function is the key element for effectiveness of CF, many variations of CF are proposed. However, these methods are not very effective, especially for users who provide few ratings (i.e. cold-start users). Design/methodology/approach A new user similarity model is proposed that focuses on improving recommendations performance for cold-start users and controversial items. To show the validity of the authors’ similarity model, they conducted some experiments and showed the effectiveness of this model in calculating similarity values between users even when only few ratings are available. In addition, the authors applied their user similarity model to a recommender system and analyzed its results. Findings Experiments on two real-world data sets are implemented and compared with some other CF techniques. The results show that the authors’ approach outperforms previous CF techniques in coverage metric while preserves accuracy for cold-start users and controversial items. Originality/value In the proposed approach, the conditions in which CF is unable to generate accurate recommendations are addressed. These conditions affect CF performance adversely, especially in the cold-start users’ condition. The authors show that their similarity model overcomes CF weaknesses effectively and improve its performance even in the cold users’ condition.


Author(s):  
Marco Sansoni ◽  
Giuseppe Ravagnani ◽  
Daniel Zucchetto ◽  
Chiara Pielli ◽  
Andrea Zanella ◽  
...  

2019 ◽  
Vol 22 (2) ◽  
pp. 255-270 ◽  
Author(s):  
Manuel D. Ortigueira ◽  
Valeriy Martynyuk ◽  
Mykola Fedula ◽  
J. Tenreiro Machado

Abstract The ability of the so-called Caputo-Fabrizio (CF) and Atangana-Baleanu (AB) operators to create suitable models for real data is tested with real world data. Two alternative models based on the CF and AB operators are assessed and compared with known models for data sets obtained from electrochemical capacitors and the human body electrical impedance. The results show that the CF and AB descriptions perform poorly when compared with the classical fractional derivatives.


Author(s):  
Juheng Zhang ◽  
Xiaoping Liu ◽  
Xiao-Bai Li

We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable outcome. It is important for the decision-maker to have a mechanism to deal with such strategic behaviors. We propose a novel approach to handle strategically missing data in regression prediction. The proposed method derives imputation values of strategically missing data based on the Support Vector Regression models. It provides incentives for the data providers to disclose their true information. We show that with the proposed method imputation errors for the missing values are minimized under some reasonable conditions. An experimental study on real-world data demonstrates the effectiveness of the proposed approach.


2011 ◽  
Vol 268-270 ◽  
pp. 166-171
Author(s):  
Xue Song Yin ◽  
Qi Huang ◽  
Liang Ming Li

This paper presents a metric-based semi-supervised fuzzy c-means algorithm called MSFCM. Through using side information and unlabeled data together, MSFCM can be applied to both clustering and classification tasks. The resulting algorithm has the following advantages compared with semi-supervised clustering: firstly, membership degree as side information is used to guide the clustering of the data; secondly, through the metric learned, clustering accuracy can be greatly improved. Experimental results on a collection of real-world data sets demonstrated the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document