scholarly journals Data assimilation for volcanic ash plumes using a satellite observational operator: a case study on the 2010 Eyjafjallajökull volcanic eruption

2017 ◽  
Vol 17 (2) ◽  
pp. 1187-1205 ◽  
Author(s):  
Guangliang Fu ◽  
Fred Prata ◽  
Hai Xiang Lin ◽  
Arnold Heemink ◽  
Arjo Segers ◽  
...  

Abstract. Using data assimilation (DA) to improve model forecast accuracy is a powerful approach that requires available observations. Infrared satellite measurements of volcanic ash mass loadings are often used as input observations for the assimilation scheme. However, because these primary satellite-retrieved data are often two-dimensional (2-D) and the ash plume is usually vertically located in a narrow band, directly assimilating the 2-D ash mass loadings in a three-dimensional (3-D) volcanic ash model (with an integral observational operator) can usually introduce large artificial/spurious vertical correlations.In this study, we look at an approach to avoid the artificial vertical correlations by not involving the integral operator. By integrating available data of ash mass loadings and cloud top heights, as well as data-based assumptions on thickness, we propose a satellite observational operator (SOO) that translates satellite-retrieved 2-D volcanic ash mass loadings to 3-D concentrations. The 3-D SOO makes the analysis step of assimilation comparable in the 3-D model space.Ensemble-based DA is used to assimilate the extracted measurements of ash concentrations. The results show that satellite DA with SOO can improve the estimate of volcanic ash state and the forecast. Comparison with both satellite-retrieved data and aircraft in situ measurements shows that the effective duration of the improved volcanic ash forecasts for the distal part of the Eyjafjallajökull volcano is about 6 h.

2016 ◽  
Author(s):  
Guangliang Fu ◽  
Hai-Xiang Lin ◽  
Arnold Heemink ◽  
Arjo Segers ◽  
Fred Prata ◽  
...  

Abstract. Data assimilation is a powerful tool that requires available observations to improve model forecast accuracy. Infrared satellite measurements of volcanic ash mass loadings are often used as input observations into the assimilation scheme. However, these satellite-retrieved data are often two-dimensional (2D), and cannot be easily combined with a three-dimensional (3D) volcanic ash model to continuously improve the volcanic ash state in a data assimilation system. By integrating available data including ash mass loadings, cloud top heights and thickness information, we propose a satellite observational operator (SOO) that translates satellite-retrieved 2D volcanic ash mass loadings to 3D concentrations at the top layer of the ash cloud. Ensemble-based data assimilation is used to continuously assimilate the extracted measurements of ash concentrations. The results show that satellite data assimilation can force the volcanic ash state to match the satellite observations, and that it improves the forecast of the ash state. Comparison with highly accurate aircraft in-situ measurements shows that the effective duration of the improved volcanic ash forecasts is about a half day. It is shown that an effective half-day ash forecast significantly improves the quality of the advice given to aviation over continental Europe.


1970 ◽  
pp. 22-36
Author(s):  
Jonathan Westin ◽  
Gunnar Almevik

Using the wooden church of Södra Råda as a case study, this article concerns new applications of technology to contextualise and activate archive material in situ at places of cultural significance. Using a combination of augmented reality and virtual reality, we describe a process of turning historical photographs and two-dimensional reconstruction drawings into three-dimensional virtual models that can be lined up to a physical space. The leading questions for our investigation concern how archive material can be contextualised, and how the result may be made accessible in situ and contribute to place development. The result of this research suggests possibilities for using historical photographs to faithfully reconstruct lost historical spaces as three-dimensional surfaces that contextualise documentation and offer spatial information.


2015 ◽  
Vol 143 (8) ◽  
pp. 3087-3108 ◽  
Author(s):  
Aaron Johnson ◽  
Xuguang Wang ◽  
Jacob R. Carley ◽  
Louis J. Wicker ◽  
Christopher Karstens

Abstract A GSI-based data assimilation (DA) system, including three-dimensional variational assimilation (3DVar) and ensemble Kalman filter (EnKF), is extended to the multiscale assimilation of both meso- and synoptic-scale observation networks and convective-scale radar reflectivity and velocity observations. EnKF and 3DVar are systematically compared in this multiscale context to better understand the impacts of differences between the DA techniques on the analyses at multiple scales and the subsequent convective-scale precipitation forecasts. Averaged over 10 diverse cases, 8-h precipitation forecasts initialized using GSI-based EnKF are more skillful than those using GSI-based 3DVar, both with and without storm-scale radar DA. The advantage from radar DA persists for ~5 h using EnKF, but only ~1 h using 3DVar. A case study of an upscale growing MCS is also examined. The better EnKF-initialized forecast is attributed to more accurate analyses of both the mesoscale environment and the storm-scale features. The mesoscale location and structure of a warm front is more accurately analyzed using EnKF than 3DVar. Furthermore, storms in the EnKF multiscale analysis are maintained during the subsequent forecast period. However, storms in the 3DVar multiscale analysis are not maintained and generate excessive cold pools. Therefore, while the EnKF forecast with radar DA remains better than the forecast without radar DA throughout the forecast period, the 3DVar forecast quality is degraded by radar DA after the first hour. Diagnostics revealed that the inferior analysis at mesoscales and storm scales for the 3DVar is primarily attributed to the lack of flow dependence and cross-variable correlation, respectively, in the 3DVar static background error covariance.


2011 ◽  
Vol 383-390 ◽  
pp. 3685-3689 ◽  
Author(s):  
Hai Feng Wang ◽  
Wen Jun Yin ◽  
Meng Zhang ◽  
Jin Dong

Advanced data assimilation method is used for the short-term wind power forecasting based on a meso-scale model. Considerable forecast error reduction is concluded from a case study in China, where a better resolved high-resolution initial condition is introduced via assimilating various in-situ observations.


2013 ◽  
Vol 1 (4) ◽  
pp. 3967-3989
Author(s):  
Y. M. Fan ◽  
H. Günther ◽  
C. C. Kao ◽  
B. C. Lee

Abstract. The purpose of this study was to enhance the accuracy of numerical wave forecasts through data assimilation during typhoon period. A sequential data assimilation scheme was modified to enable its use with partitions of directional wave spectra. The performance of the system was investigated with respect to operational applications specifically for typhoon wave. Two typhoons that occurred in 2006 around Taiwan (Kaemi and Shanshan) were used for this case study. The proposed data assimilation method increased the forecast accuracy in terms of wave parameters, such as wave height and period. After assimilation, the shapes of directional spectra were much closer to those reported from independent observations.


2014 ◽  
Vol 7 (4) ◽  
pp. 3863-3913
Author(s):  
T. H. Virtanen ◽  
P. Kolmonen ◽  
E. Rodríguez ◽  
L. Sogacheva ◽  
A.-M. Sundström ◽  
...  

Abstract. An algorithm is presented for estimation of volcanic ash plume top height using the stereo view of the Advanced Along Track Scanning Radiometer (AATSR) aboard ENVISAT. The algorithm is based on matching the top of atmosphere (TOA) reflectances and brightness temperatures of the nadir and 55° forward views, and using the resulting parallax to obtain the height estimate. Various retrieval parameters are discussed in detail, several quality parameters are introduced, and post-processing methods for screening out unreliable data have been developed. The method is compared against other satellite observations and in-situ data. The proposed algorithm is designed to be fully automatic, and can be implemented into operational retrieval algorithms. Combined with automated ash detection using the brightness temperature difference between the 11 μm and 12 μm channels, the algorithm allows simultaneous retrieval of horizontal and vertical dispersion of volcanic ash efficiently. A case study on the eruption of the Icelandic volcano Eyjafjallajökull in 2010 is presented. The height estimate method results are validated against available satellite and ground based data.


2021 ◽  
Author(s):  
Henan Li ◽  
Guohong Liu ◽  
Chao Li ◽  
Yongli Sun ◽  
Yujie Feng

Abstract Six 60-L benthic microbial electrochemical systems (BMES) were built for the bioremediation of river sediment. Carbon mesh anodes with honeycomb-structure supports were compared with horizontal anodes, and the system was tested using different cover depths and anode densities. The pollutant removal, electricity generation, and electrochemistry of the six BMES with different anodes was examined using the Ashi River (Harbin, China) as a case study. Total organic carbon (TOC) and total nitrogen (TN) removal from sediments in BMES with three-dimensional anodes were 20%~30% and 20%~33% higher for the other reactors. Moreover, the honeycomb-structure of the anode also resulted in higher power density and improved humus removal.


2020 ◽  
Vol 148 (3) ◽  
pp. 1147-1175 ◽  
Author(s):  
Hristo G. Chipilski ◽  
Xuguang Wang ◽  
David B. Parsons

Abstract Using data from the 6 July 2015 PECAN case study, this paper provides the first objective assessment of how the assimilation of ground-based remote sensing profilers affects the forecasts of bore-driven convection. To account for the multiscale nature of the phenomenon, data impacts are examined separately with respect to (i) the bore environment, (ii) the explicitly resolved bore, and (iii) the bore-initiated convection. The findings from this work suggest that remote sensing profiling instruments provide considerable advantages over conventional in situ observations, especially when the retrieved data are assimilated at a high temporal frequency. The clearest forecast improvements are seen in terms of the predicted bore environment where the assimilation of kinematic profilers reduces a preexisting bias in the structure of the low-level jet. Data impacts with respect to the other two forecast components are mixed in nature. While the assimilation of thermodynamic retrievals from the Atmospheric Emitted Radiance Interferometer (AERI) results in the best convective forecast, it also creates a positive bias in the height of the convectively generated bore. Conversely, the assimilation of wind profiler data improves the characteristics of the explicitly resolved bore, but tends to further exacerbate the lack of convection in the control forecasts. Various dynamical diagnostics utilized throughout this study provide a physical insight into the data impact results and demonstrate that a successful prediction of bore-driven convection requires an accurate depiction of the internal bore structure as well as the ambient environment ahead of it.


2014 ◽  
Vol 7 (8) ◽  
pp. 2437-2456 ◽  
Author(s):  
T. H. Virtanen ◽  
P. Kolmonen ◽  
E. Rodríguez ◽  
L. Sogacheva ◽  
A.-M. Sundström ◽  
...  

Abstract. An algorithm is presented for the estimation of volcanic ash plume top height using the stereo view of the Advanced Along Track Scanning Radiometer (AATSR) aboard Envisat. The algorithm is based on matching top of the atmosphere (TOA) reflectances and brightness temperatures of the nadir and 55° forward views, and using the resulting parallax to obtain the height estimate. Various retrieval parameters are discussed in detail, several quality parameters are introduced, and post-processing methods for screening out unreliable data have been developed. The method is compared to other satellite observations and in situ data. The proposed algorithm is designed to be fully automatic and can be implemented in operational retrieval algorithms. Combined with automated ash detection using the brightness temperature difference between the 11 and 12 μm channels, the algorithm allows efficient simultaneous retrieval of the horizontal and vertical dispersion of volcanic ash. A case study on the eruption of the Icelandic volcano Eyjafjallajökull in 2010 is presented.


Sign in / Sign up

Export Citation Format

Share Document