scholarly journals Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions

2018 ◽  
Vol 18 (24) ◽  
pp. 17843-17861 ◽  
Author(s):  
Nivedita K. Kumar ◽  
Joel C. Corbin ◽  
Emily A. Bruns ◽  
Dario Massabó ◽  
Jay G. Slowik ◽  
...  

Abstract. We investigate the optical properties of light-absorbing organic carbon (brown carbon) from domestic wood combustion as a function of simulated atmospheric aging. At shorter wavelengths (370–470 nm), light absorption by brown carbon from primary organic aerosol (POA) and secondary organic aerosol (SOA) formed during aging was around 10 % and 20 %, respectively, of the total aerosol absorption (brown carbon plus black carbon). The mass absorption cross section (MAC) determined for black carbon (BC, 13.7 m2 g−1 at 370 nm, with geometric standard deviation GSD =1.1) was consistent with that recommended by Bond et al. (2006). The corresponding MAC of POA (5.5 m2 g−1; GSD =1.2) was higher than that of SOA (2.4 m2 g−1; GSD =1.3) at 370 nm. However, SOA presents a substantial mass fraction, with a measured average SOA ∕ POA mass ratio after aging of ∼5 and therefore contributes significantly to the overall light absorption, highlighting the importance of wood-combustion SOA as a source of atmospheric brown carbon. The wavelength dependence of POA and SOA light absorption between 370 and 660 nm is well described with absorption Ångström exponents of 4.6 and 5.6, respectively. UV-visible absorbance measurements of water and methanol-extracted OA were also performed, showing that the majority of the light-absorbing OA is water insoluble even after aging.

2018 ◽  
Author(s):  
Nivedita K. Kumar ◽  
Joel C. Corbin ◽  
Emily A. Bruns ◽  
Dario Massabó ◽  
Jay G. Slowik ◽  
...  

Abstract. We investigate the optical properties of light-absorbing organic carbon (brown carbon) from domestic wood combustion as a function of simulated atmospheric aging. At shorter wavelengths, light absorption by brown carbon from primary organic aerosol (POA) and secondary organic aerosol (SOA) formed during aging was around 10 % and 20 %, respectively, of the total aerosol absorption (brown carbon plus black carbon). The mass absorption cross-section (MAC) determined for black carbon (BC, 13.7 m2 g−1 (geometric standard deviation GSD = 1.1) at 370 nm) was consistent with that recommended by Bond et al. (2006). The corresponding MAC of POA (5.5 m2 g−1 (GSD = 1.2)) was higher than that of SOA (2.4 m2 g−1 (GSD = 1.3)) at 370 nm. However, SOA presents a substantial mass fraction, with a measured average SOA / POA mass ratio after aging of ~ 5 and therefore contributes significantly to the overall light absorption, highlighting the importance of wood-combustion SOA as a source of atmospheric brown carbon. The wavelength dependence of POA and SOA light absorption between 370 nm and 660 nm is well described with absorption Ångström exponents of 4.6 and 5.6, respectively. UV-visible absorbance measurements of water and methanol-extracted OA were also performed showing that the majority of the light-absorbing OA is water insoluble even after aging.


2009 ◽  
Vol 9 (6) ◽  
pp. 2035-2050 ◽  
Author(s):  
M. Yang ◽  
S. G. Howell ◽  
J. Zhuang ◽  
B. J. Huebert

Abstract. Black carbon, brown carbon, and mineral dust are three of the most important light absorbing aerosols. Their optical properties differ greatly and are distinctive functions of the wavelength of light. Most optical instruments that quantify light absorption, however, are unable to distinguish one type of absorbing aerosol from another. It is thus instructive to separate total absorption from these different light absorbers to gain a better understanding of the optical characteristics of each aerosol type. During the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) campaign near Beijing, we measured light scattering using a nephelometer, and light absorption using an aethalometer and a particulate soot absorption photometer. We also measured the total mass concentrations of carbonaceous (elemental and organic carbon) and inorganic particulates, as well as aerosol number and mass distributions. We were able to identify periods during the campaign that were dominated by dust, biomass burning, fresh (industrial) chimney plumes, other coal burning pollution, and relatively clean (background) air for Northern China. Each of these air masses possessed distinct intensive optical properties, including the single scatter albedo and Ångstrom exponents. Based on the wavelength-dependence and particle size distribution, we apportioned total light absorption to black carbon, brown carbon, and dust; their mass absorption efficiencies at 550 nm were estimated to be 9.5, 0.5 (a lower limit value), and 0.03 m2/g, respectively. While agreeing with the common consensus that black carbon is the most important light absorber in the mid-visible, we demonstrated that brown carbon and dust could also cause significant absorption, especially at shorter wavelengths.


2020 ◽  
Vol 20 (19) ◽  
pp. 11625-11637
Author(s):  
Antonios Tasoglou ◽  
Evangelos Louvaris ◽  
Kalliopi Florou ◽  
Aikaterini Liangou ◽  
Eleni Karnezi ◽  
...  

Abstract. A month-long set of summertime measurements in a remote area in the Mediterranean is used to quantify aerosol absorption and the role of black and brown carbon. The suite of instruments included a high-resolution aerosol mass spectrometer (HR-ToF-AMS) and a scanning mobility particle sizer (SMPS), both coupled to a thermodenuder and an Aethalometer, a photoacoustic extinctiometer (PAX405), and a single particle soot photometer (SP2). The average refractory black carbon (rBC) concentration during the campaign was 0.14 µg m−3, representing 3 % of the fine aerosol mass. The measured light absorption was two or more times higher than that of fresh black carbon (BC). Mie theory indicated that the absorption enhancement due to the coating of BC cores by nonrefractory material could explain only part of this absorption enhancement. The role of brown carbon (BrC) and other non-BC light-absorbing material was then investigated. A good correlation (R2=0.76) between the unexplained absorption and the concentration of extremely low volatility organic compounds (ELVOCs) mass was found.


2020 ◽  
Author(s):  
Antonios Tasoglou ◽  
Evangelos Louvaris ◽  
Kalliopi Florou ◽  
Aikaterini Liangou ◽  
Eleni Karnezi ◽  
...  

Abstract. A month-long set of summertime measurements in a remote area in the Mediterranean is used to quantify aerosol absorption and the role of black and brown carbon. The suite of instruments included a high-resolution Aerosol Mass Spectrometer (HR-ToF-AMS), and a Scanning Mobility Particle Sizer (SMPS) both coupled to a thermodenuder and an aethalometer, a photoacoustic extinctiometer (PAX405), a Multi-Angle Absorption Photometer (MAAP), and a Single Particle Soot Photometer (SP2). The average refractory black carbon (rBC) concentration during the campaign was 0.14 μg m−3, representing 3 % of the fine aerosol mass. The measured light absorption was two or more times higher than that of fresh black carbon (BC). Mie theory indicated that the absorption enhancement due to the coating of BC cores by non-refractory material could explain only part of this absorption enhancement. The role of brown carbon (BrC) and other non-BC light-absorbing material was then investigated. A good correlation (R2 = 0.65) between the unexplained absorption and the concentration of extremely low volatility organic compounds (ELVOCs) mass was found.


2013 ◽  
Vol 13 (5) ◽  
pp. 11509-11536 ◽  
Author(s):  
R. Saleh ◽  
C. J. Hennigan ◽  
G. R. McMeeking ◽  
W. K. Chuang ◽  
E. S. Robinson ◽  
...  

Abstract. Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA) in the fresh emissions and secondary organic aerosol (SOA) produced by photo-chemical aging absorb light to a significant extent, and are categorized as brown carbon. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits steeper wavelength-dependence (larger Absorption Ångström Exponent) and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.


2013 ◽  
Vol 13 (15) ◽  
pp. 7683-7693 ◽  
Author(s):  
R. Saleh ◽  
C. J. Hennigan ◽  
G. R. McMeeking ◽  
W. K. Chuang ◽  
E. S. Robinson ◽  
...  

Abstract. Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA) in the fresh emissions and secondary organic aerosol (SOA) produced by photo-chemical aging contain brown carbon, and absorb light to a significant extent. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits stronger wavelength-dependence and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.


2012 ◽  
Vol 5 (1) ◽  
pp. 1003-1027 ◽  
Author(s):  
F. Esposito ◽  
M. R. Calvello ◽  
E. Gueguen ◽  
G. Pavese

Abstract. A novel approach for the analysis of aerosol absorption coefficient measurements is presented. A 7-wavelenghts aethalometer has been employed to identify brown carbon (BrC) and black carbon (BC) and to detect organic carbon (OC) in fine atmospheric aerosols (PM2.5). The Magee Aethalometer estimates the BC content in atmospheric particulate by measuring the light attenuation in the aerosols accumulated on a quartz filter, at the standard wavelength λ = 0.88 μm. The known Magee algorithm is based on the hypothesis of a mass absorption coefficient inversely proportional to the wavelength. The new algorithm has been developed and applied to the whole spectral range; it verifies the spectral absorption behavior and, thus, it distinguishes between black and brown carbon. Moreover, it allows also to correct the absorption estimation at the UV wavelength commonly used to qualitatively detect the presence of mixed hydrocarbons. The algorithm has been applied to data collected in Agri Valley, located in Southern Italy, where torched crude oil undergoes a pre-treatment process. The Magee Aethalometer has been set to measure Aerosol absorption coefficients τaer (λ, t) every 5 min. Wavelength dependence of τaer (λ, t) has been analyzed by a best-fit technique and, excluding UV-wavelengths, both the absorption Angstrom coefficient α and the BC (or BrC) concentration have been determined. Finally, daily histograms of α provide information on optical properties of carbonaceous aerosol, while the extrapolation at UV-wavelengths gives information on the presence of semivolatile organic carbon (OC) particles.


2008 ◽  
Vol 8 (3) ◽  
pp. 10913-10954 ◽  
Author(s):  
M. Yang ◽  
S. G. Howell ◽  
J. Zhuang ◽  
B. J. Huebert

Abstract. Black carbon, brown carbon, and mineral dust are three of the most important light absorbing aerosols. Their optical properties differ greatly and are distinctive functions of the wavelength of light. Most optical instruments that quantify light absorption, however, are unable to distinguish one type of absorbing aerosol from another. It is thus instructive to separate total absorption from these different light absorbers to gain a better understanding of the optical characteristics of each aerosol type. During the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) campaign near Beijing, we measured light scattering using a nephelometer, and light absorption using an aethalometer and a particulate soot absorption photometer. We also measured the total mass concentrations of carbonaceous (elemental and organic carbon) and inorganic particulates, as well as aerosol number and mass distributions. We were able to identify periods during the campaign that were dominated by dust, biomass burning, fresh (industrial) chimney plumes, other coal burning pollution, and relatively clean (background) air for Northern China. Each of these air masses possessed distinct intensive optical properties, including the single scatter albedo and Ångstrom exponents. Based on the wavelength-dependence and particle size distribution, we apportioned total light absorption to black carbon, brown carbon, and dust; their mass absorption efficiencies at 550 nm were estimated to be 9.5, 0.5, and 0.03 m2/g, respectively. While agreeing with the common consensus that BC is the most important light absorber in the mid-visible, we demonstrated that brown carbon and dust could also cause significant absorption, especially at shorter wavelengths.


Sign in / Sign up

Export Citation Format

Share Document