scholarly journals Long-term series and trends in surface solar radiation in Athens, Greece

2018 ◽  
Vol 18 (4) ◽  
pp. 2395-2411 ◽  
Author(s):  
Stelios Kazadzis ◽  
Dimitra Founda ◽  
Basil E. Psiloglou ◽  
Harry Kambezidis ◽  
Nickolaos Mihalopoulos ◽  
...  

Abstract. We present a long-term series of surface solar radiation (SSR) from the city of Athens, Greece. SSR measurements were performed from 1954 to 2012, and before that (1900–1953) sunshine duration (SD) records were used in order to reconstruct monthly SSR. Analysis of the whole data set (1900–2012) mainly showed very small (0.02 %) changes in SSR from 1900 to 1953, including a maximum decrease of −2.9 % decade−1 in SSR during the 1910 to 1940 period, assuming a linear change. For the dimming period 1955–1980, −2 % decade−1 was observed that matches various European long-term SSR-measurement-related studies. This percentage in Athens is in the lower limit, compared to other studies in the Mediterranean area. For the brightening period 1980–2012 we calculated +1.5 % decade−1, which is also in the lower limit of the reported positive changes in SSR around Europe. Comparing the 30-year periods 1954–1983 and 1983–2012, we found a difference of 4.5 %. However, measurements of the first 30-year period are associated with higher uncertainties than those of the second period, especially when looking at year-to-year changes. The difference between the two periods was observed for all seasons except winter. Analyzing SSR calculations of all-sky and clear-sky (cloudless) conditions/days, we report that most of the observed changes in SSR after 1954 can be attributed partly to cloudiness and mostly to aerosol load changes.

2017 ◽  
Author(s):  
Stelios Kazadzis ◽  
Dimitra Founda ◽  
Bill Psiloglou ◽  
Haralambos Kambezidis ◽  
Nikolaos Mihalopoulos ◽  
...  

Abstract. We present a long-term series of solar surface radiation (SSR) for the city of Athens, Greece. The SSR measurements were performed from 1953 to 2012, and before that (1900–1952) sunshine duration (SD) records have been used in order to reconstruct monthly SSR. Analysis from the whole dataset (1900–2012) mainly showed: a decrease of 2.9 % per decade in SSR from 1910 to 1940 assuming a linear change in SSR. For the dimming period (1955–1980), a −2 % change per decade has been observed, that matches various European long-term SSR measurement related studies. This percentage for Athens is in the lower limit, compared to other studies for the Mediterranean area. For the brightening period (1980–2012) we have calculated a +1.5 % per decade which is also in the lower limit of the reported positive changes in SSR around Europe. Comparing the 30-year periods (1954–1983 and 1983–2012) we have found a difference of 4.5 %. The difference was observed for all seasons except winter. Using an analysis of SSR calculations of all sky and clear sky (cloudless) conditions/days, we report that most of the observed changes in SSR after 1954 can be attributed partly to cloudiness and mostly to aerosol load changes.


2021 ◽  
Vol 13 (3) ◽  
pp. 907-922
Author(s):  
Fei Feng ◽  
Kaicun Wang

Abstract. Although great progress has been made in estimating surface solar radiation (Rs) from meteorological observations, satellite retrieval, and reanalysis, getting best-estimated long-term variations in Rs are sorely needed for climate studies. It has been shown that Rs data derived from sunshine duration (SunDu) can provide reliable long-term variability, but such data are available at sparsely distributed weather stations. Here, we merge SunDu-derived Rs with satellite-derived cloud fraction and aerosol optical depth (AOD) to generate high-spatial-resolution (0.1∘) Rs over China from 2000 to 2017. The geographically weighted regression (GWR) and ordinary least-squares regression (OLS) merging methods are compared, and GWR is found to perform better. Based on the SunDu-derived Rs from 97 meteorological observation stations, which are co-located with those that direct Rs measurement sites, the GWR incorporated with satellite cloud fraction and AOD data produces monthly Rs with R2=0.97 and standard deviation =11.14 W m−2, while GWR driven by only cloud fraction produces similar results with R2=0.97 and standard deviation =11.41 W m−2. This similarity is because SunDu-derived Rs has included the impact of aerosols. This finding can help to build long-term Rs variations based on cloud data, such as Advanced Very High Resolution Radiometer (AVHRR) cloud retrievals, especially before 2000, when satellite AOD retrievals are not unavailable. The merged Rs product at a spatial resolution of 0.1∘ in this study can be downloaded at https://doi.org/10.1594/PANGAEA.921847 (Feng and Wang, 2020).


2020 ◽  
Author(s):  
Fei Feng ◽  
Kaicun Wang

Abstract. Although great progress has been made in estimating surface solar radiation (Rs) from meteorological observations, satellite retrieval and reanalysis, getting best estimated of long-term variations in Rs are sorely needed for climate studies. It has been shown that sunshine duration (SunDu)-derived Rs data can provide reliable long-term Rs variation. Here, we merge SunDu-derived Rs data with satellite-derived cloud fraction and aerosol optical depth (AOD) data to generate high spatial resolution (0.1°) Rs over China from 2000 to 2017. The geographically weighted regression (GWR) and ordinary least squares regression (OLS) merging methods are compared, and GWR is found to perform better. Whether or not AOD is taken as input data makes little difference for the GWR merging results. Based on the SunDu-derived Rs from 97 meteorological observation stations, the GWR incorporated with satellite cloud fraction and AOD data produces monthly Rs with R2 = 0.97 and standard deviation = 11.14 W/m2, while GWR driven by only cloud fraction produces similar results with R2 = 0.97 and standard deviation = 11.41 w/m2. This similarity is because SunDu-derived Rs has included the impact of aerosols. This finding can help to build long-term Rs variations based on cloud data, such as Advanced Very High Resolution Radiometer (AVHRR) cloud retrievals, especially before 2000, when satellite AOD retrievals are not unavailable. The merged Rs product at a spatial resolution of 0.1° in this study can be downloaded at https://doi.pangaea.de/10.1594/PANGAEA.921847 (Feng and Wang, 2020).


2021 ◽  
Author(s):  
Uwe Pfeifroth ◽  
Jaqueline Drücke ◽  
Jörg Trentmann ◽  
Rainer Hollmann

<p class="western"><span lang="en-US">The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates and distributes high quality long-term climate data records (CDR) of energy and water cycle parameters, which are freely available.</span></p> <p class="western"><span lang="en-US">In 2022, a new version of the “Surface Solar Radiation data set – Heliosat” will be released: SARAH-3. As the previous editions, the SARAH-3 climate data record is based on satellite observations from the first and second METEOSAT generations and provides various surface radiation parameters, including global radiation, direct radiation, sunshine duration, photosynthetic active radiation and others. SARAH-3 covers the time period 1983 to 2020 and offers 30-minute instantaneous data as well as daily and monthly means on a regular 0.05° x 0.05° lon/lat grid.</span></p> <p class="western" align="left"><span lang="en-US">In this presentation, an overview of the SARAH climate data record and their applications will be given. A focus will be on the SARAH-3 developments and validation with surface reference observations. Further, SARAH-3 will be used for a first analysis of the climate variability and potential trends of global radiation in Europe during the last decades. </span><span lang="en-US">The data record reveals that there is an increasing trend of surface solar radiation in Europe during the last decades, which is superimposed by decadal and regional variability.</span></p>


2019 ◽  
Vol 67 (3) ◽  
pp. 280-288 ◽  
Author(s):  
Jitka Kofroňová ◽  
Miroslav Tesař ◽  
Václav Šípek

Abstract Longwave radiation, as part of the radiation balance, is one of the factors needed to estimate potential evapotranspiration (PET). Since the longwave radiation balance is rarely measured, many computational methods have been designed. In this study, we report on the difference between the observed longwave radiation balance and modelling results obtained using the two main procedures outlined in FAO24 (relying on the measured sunshine duration) and FAO56 (based on the measured solar radiation) manuals. The performance of these equations was evaluated in the April–October period over eight years at the Liz experimental catchment and grass surface in the Bohemian Forest (Czech Republic). The coefficients of both methods, which describe the influence of cloudiness factor and atmospheric emissivity of the air, were calibrated. The Penman-Monteith method was used to calculate the PET. The use of default coefficient values gave errors of 40–100 mm (FAO56) and 0–20 mm (FAO24) for the seasonal PET estimates (the PET was usually overestimated). Parameter calibration decreased the FAO56 error to less than 20 mm per season (FAO24 remained unaffected by the calibration). The FAO56 approach with calibrated coefficients proved to be more suitable for estimation of the longwave radiation balance.


2016 ◽  
Author(s):  
Rosa Delia García ◽  
Emilio Cuevas ◽  
Omaira Elena García ◽  
Ramon Ramón ◽  
Pedro Miguel Romero-Campos ◽  
...  

Abstract. A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain) starting on July 17, 2014. We compare global solar radiation (GSR) records measured with a CM-21 pyranometer Kipp & Zonen, taken in the framework of the Baseline Surface Radiation Network, with those measured with a Multifilter Rotating Shadowband Radiometer (MFRSR), and a bimetallic pyranometer (PYR), and GSR estimated from sunshine duration performed by a Campbell-Stokes sunshine recorder (CS) and a Kipp & Zonen sunshine duration sensor (CSD). Given the GSR BSRN records are subject of strict quality controls (based on principles of physical limits and comparison with the LibRadtran model), they have been used as reference in the intercomparison study. We obtain an overall root mean square error (RMSE) of ~0.9 MJm2 (4 %) for GSR PYR and GSR MFRSR, 1.9 MJm2 (7 %) and 1.2 MJm2 (5 %) for GSR CS and GSR CSD, respectively. Factors such as temperature, fraction of the clear sky, relative humidity and the solar zenith angle have shown to moderately affect the GSR observations. As application of the methodology developed in this work, we have re-evaluated the GSR time series between 1977 and 1991 obtained with two PYRs at IZO. By comparing with coincident GSR estimates from SD observations, we probe the high consistency of those measurements and their temporal stability. These results demonstrate that 1) the continuous-basis intercomparison of different GSR techniques offers important diagnostics for identifying inconsistencies between GSR data records, and 2) the GSR measurements performed with classical and more simple instruments are consistent with more modern techniques and, thus, valid to recover GSR time series and complete worldwide distributed GSR data. The intercomparison and quality assessment of these different techniques have allowed to obtain a complete and consistent long-term global solar radiation series (1977–2015) at Izaña.


Sign in / Sign up

Export Citation Format

Share Document