scholarly journals NO<sub>2</sub>-initiated multiphase oxidation of SO<sub>2</sub> by O<sub>2</sub> on CaCO<sub>3</sub> particles

2018 ◽  
Vol 18 (9) ◽  
pp. 6679-6689 ◽  
Author(s):  
Ting Yu ◽  
Defeng Zhao ◽  
Xiaojuan Song ◽  
Tong Zhu

Abstract. The reaction of SO2 with NO2 on the surface of aerosol particles has been suggested to be important in sulfate formation during severe air pollution episodes in China. However, we found that the direct oxidation of SO2 by NO2 was slow and might not be the main reason for sulfate formation in ambient air. In this study, we investigated the multiphase reaction of SO2 with an O2 ∕ NO2 mixture on single CaCO3 particles using Micro-Raman spectroscopy. The reaction converted the CaCO3 particle to a Ca(NO3)2 droplet, with CaSO4 ⚫ 2H2O solid particles embedded in it, which constituted a significant fraction of the droplet volume at the end of the reaction. The reactive uptake coefficient of SO2 for sulfate formation was on the order of 10−5, which was higher than that for the multiphase reaction of SO2 directly with NO2 by 2–3 orders of magnitude. According to our observations and the literature, we found that in the multiphase reaction of SO2 with the O2 ∕ NO2 mixture, O2 was the main oxidant of SO2 and was necessary for radical chain propagation. NO2 acted as the initiator of radical formation, but not as the main oxidant. The synergy of NO2 and O2 resulted in much faster sulfate formation than the sum of the reaction rates with NO2 and with O2 alone. We estimated that the multiphase oxidation of SO2 by O2 initiated by NO2 could be an important source of sulfate and a sink of SO2, based on the calculated lifetime of SO2 regarding the loss through the multiphase reaction versus the loss through the gas-phase reaction with OH radicals. Parameterization of the reactive uptake coefficient of the reaction observed in our laboratory for further model simulation is needed, as well as an integrated assessment based on field observations, laboratory study results, and model simulations to evaluate the importance of the reaction in ambient air during severe air pollution episodes, especially in China.

2017 ◽  
Author(s):  
Ting Yu ◽  
Defeng Zhao ◽  
Xiaojuan Song ◽  
Tong Zhu

Abstract. The reaction of SO2 with NO2 on the surface of aerosol particles has been suggested to be important in sulfate formation during severe air pollution in China. However, we found that the direct oxidation of SO2 by NO2 was slow and might not be the main reason for sulfate formation in ambient air. In this study, we investigated the multiphase reaction of SO2 with NO2 on single CaCO3 particles in synthetic air, i.e., in the presence of O2, using Micro-Raman spectroscopy. The reaction converted the CaCO3 particle to the Ca(NO3)2 droplet containing CaSO4 × 2H2O solid particles embedded in it, which constituted a large fraction of the droplet volume at the end of the reaction. Compared with the reaction in the absence of O2, the morphology of the particle during the reaction in synthetic air was significantly different and the amount of sulfate formed at the end of the experiment was much higher. The reactive uptake coefficient of SO2 for sulfate formation was on the order of 10−5, which was two to three orders of magnitude higher than that in the absence of O2. According to the difference between the reactive uptake coefficient of SO2 in the absence of O2 and that in the presence of O2, we found that in the multiphase reaction of SO2 with NO2 in synthetic air, O2 was the main oxidant of SO2 and necessary for radical chain propagation. NO2 acted as the initializer of the radical formation but not the main oxidant. Such synergy of NO2 and O2 resulted in much faster sulfate formation than when either of them was absent. We estimated that the multiphase oxidation of SO2 by O2 in the presence of NO2 can be an important source of sulfate and sink of SO2 based on the calculated lifetime of SO2 regarding the loss by the multiphase reaction versus the lifetime regarding the loss by the gas phase reaction with OH radical. Parameterizing the reactive uptake coefficient of the reaction observed in our laboratory for further model simulation is needed, as well as an integrated assessment based on field observation, laboratory study results, and model simulation to evaluate the importance of the reaction in ambient air during the severe air pollution period, especially in China.


2017 ◽  
Author(s):  
Defeng Zhao ◽  
Xiaojuan Song ◽  
Tong Zhu ◽  
Zefeng Zhang ◽  
Yingjun Liu

Abstract. Heterogeneous/multiphase reaction of SO2 with NO2 on solid or aqueous particles is thought to be a potentially important source of sulfate in the atmosphere, for example, during heavily polluted episodes (haze), but the reaction mechanism and rate are uncertain. In this study, we investigated the heterogeneous/multiphase reaction of SO2 with NO2 on individual CaCO3 particles in N2 using Micro-Raman spectroscopy in order to assess the importance of the direct oxidation of SO2 by NO2. In the SO2/NO2/H2O/N2 gas mixture, the CaCO3 solid particle was first converted to the Ca(NO3)2 droplet by the reaction with NO2 and the deliquescence of Ca(NO3)2, and then NO2 oxidized SO2 in the Ca(NO3)2 droplet forming CaSO4, which appeared as needle-shaped crystals. Sulfate was mainly formed after the complete conversion of CaCO3 to Ca(NO3)2, that is, during the multiphase oxidation of SO2 by NO2. The precipitation of CaSO4 from the droplet solution promoted sulfate formation. The reactive uptake coefficient of SO2 for sulfate formation is on the order of 10−8, and RH enhanced the uptake coefficient. We estimate that the direct multiphase oxidation of SO2 by NO2 is not an important source of sulfate in the ambient atmosphere compared with the SO2 oxidation by OH in the gas phase.


2018 ◽  
Vol 18 (4) ◽  
pp. 2481-2493 ◽  
Author(s):  
Defeng Zhao ◽  
Xiaojuan Song ◽  
Tong Zhu ◽  
Zefeng Zhang ◽  
Yingjun Liu ◽  
...  

Abstract. Heterogeneous/multiphase oxidation of SO2 by NO2 on solid or aqueous particles is thought to be a potentially important source of sulfate in the atmosphere, for example, during heavily polluted episodes (haze), but the reaction mechanism and rate are uncertain. In this study, in order to assess the importance of the direct oxidation of SO2 by NO2 we investigated the heterogeneous/multiphase reaction of SO2 with NO2 on individual CaCO3 particles in N2 using Micro-Raman spectroscopy. In the SO2 ∕ NO2 ∕ H2O ∕ N2 gas mixture, the CaCO3 solid particle was first converted to the Ca(NO3)2 droplet by the reaction with NO2 and the deliquescence of Ca(NO3)2, and then NO2 oxidized SO2 in the Ca(NO3)2 droplet forming CaSO4, which appeared as needle-shaped crystals. Sulfate was mainly formed after the complete conversion of CaCO3 to Ca(NO3)2, that is, during the multiphase oxidation of SO2 by NO2. The precipitation of CaSO4 from the droplet solution promoted sulfate formation. The reactive uptake coefficient of SO2 for sulfate formation is on the order of 10−8, and RH enhanced the uptake coefficient. We estimate that the direct multiphase oxidation of SO2 by NO2 is not an important source of sulfate in the ambient atmosphere compared with the SO2 oxidation by OH in the gas phase and is not as important as other aqueous-phase pathways, such as the reactions of SO2 with H2O2, O3, and O2, with or without transition metals.


2021 ◽  
Vol 249 ◽  
pp. 118249
Author(s):  
Mathilde Pascal ◽  
Vérène Wagner ◽  
Anna Alari ◽  
Magali Corso ◽  
Alain Le Tertre

2018 ◽  
Vol 69 ◽  
pp. 141-154 ◽  
Author(s):  
Nianliang Cheng ◽  
Yunting Li ◽  
Bingfen Cheng ◽  
Xin Wang ◽  
Fan Meng ◽  
...  

2006 ◽  
Vol 49 (1) ◽  
pp. 60-64 ◽  
Author(s):  
Che-Ming CHANG ◽  
Long-Nan CHANG ◽  
Hui-Chuan HSIAO ◽  
Fang-Chuan LU ◽  
Ping-Fei SHIEH ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document