scholarly journals Modelling mixed-phase clouds with the large-eddy model UCLALES–SALSA

2020 ◽  
Vol 20 (19) ◽  
pp. 11639-11654
Author(s):  
Jaakko Ahola ◽  
Hannele Korhonen ◽  
Juha Tonttila ◽  
Sami Romakkaniemi ◽  
Harri Kokkola ◽  
...  

Abstract. The large-eddy model UCLALES–SALSA, with an exceptionally detailed aerosol description for both aerosol number and chemical composition, has been extended for ice and mixed-phase clouds. Comparison to a previous mixed-phase cloud model intercomparison study confirmed the accuracy of newly implemented ice microphysics. A further simulation with a heterogeneous ice nucleation scheme, in which ice-nucleating particles (INPs) are also a prognostic variable, captured the typical layered structure of Arctic mid-altitude mixed-phase cloud: a liquid layer near cloud top and ice within and below the liquid layer. In addition, the simulation showed a realistic freezing rate of droplets within the vertical cloud structure. The represented detailed sectional ice microphysics with prognostic aerosols is crucially important in reproducing mixed-phase clouds.

2020 ◽  
Author(s):  
Jaakko Ahola ◽  
Hannele Korhonen ◽  
Juha Tonttila ◽  
Sami Romakkaniemi ◽  
Harri Kokkola ◽  
...  

Abstract. The large-eddy model UCLALES-SALSA, with exceptionally detailed aerosol description for both aerosol number and chemical composition, has been extended for ice and mixed-phase clouds. Comparison to a previous mixed-phase cloud model intercomparison study confirmed the accuracy of newly implemented ice microphysics. Further simulation with a heterogeneous ice nucleation scheme, where also ice nucleating particles (INP) are a prognostic variable, captured the typical layered structure of Arctic mid-altitude mixed-phase cloud: a liquid layer near cloud top and ice within and below the liquid layer. In addition, the simulation showed realistic freezing rate of droplets within the vertical cloud structure. The represented detailed sectional ice microphysics with prognostic aerosols is crucially important in reproducing mixed-phase clouds.


Author(s):  
Jaakko Ahola ◽  
Hannele Korhonen ◽  
Juha Tonttila ◽  
Sami Romakkaniemi ◽  
Harri Kokkola ◽  
...  

<p>We have extended the large-eddy model UCLALES-SALSA (Tonttila et al., 2017) to include formation of ice and mixed-phase clouds. The model has exceptionally detailed aerosol description for both aerosol number and chemical composition. We confirmed the accuracy of newly implemented ice microphysics with a comparison to a previous mixed-phase cloud model intercomparison study.</p><p>In a further simulation the model captured the typical layered structure of Arctic mixed-phase clouds: a liquid layer near cloud top and ice within and below the liquid layer. The simulation also demonstrated how larger droplets froze first. Moreover, the simulation showed realistic freezing rates of droplets within the vertical cloud structure. These characteristics were possible to capture with a heterogeneous ice nucleation scheme, where also ice nucleating particles (INP) are prognosed. Here, dust containing particles acted as INPs.</p><p>The prognostic simulation showed the importance of the self-adjustment of ice nucleation active particles. This is in good agreement with an observational study where resilient mixed-phase clouds are seen together with relatively high ice nuclei concentrations.</p><p>The implemented detailed sectional ice microphysics with prognostic aerosols is essentially important in reproducing the characteristics of mixed-phase clouds. The manuscript of this study is submitted for publication.</p>


2013 ◽  
Vol 13 (8) ◽  
pp. 4339-4348 ◽  
Author(s):  
Y. Yun ◽  
J. E. Penner ◽  
O. Popovicheva

Abstract. Fossil fuel black carbon and organic matter (ffBC/OM) are often emitted together with sulfate, which coats the surface of these particles and changes their hygroscopicity. Observational studies at cirrus temperatures (≈−40 °C) show that the hygroscopicity of soot particles can modulate their ice nucleation ability. Here, we implement a scheme for 3 categories of soot (hydrophobic, hydrophilic and hygroscopic) on the basis of laboratory data and specify their ability to act as ice nuclei at mixed-phase temperatures by extrapolating the observations using a published deposition/condensation/immersion freezing parameterization. The new scheme results in significant changes to anthropogenic forcing in mixed-phase clouds. The net forcing in our offline model studies varies from 0.111 to 1.059 W m−2 depending on the ice nucleation capability of hygroscopic soot particles. The total anthropogenic cloud forcing and whole-sky forcing with the new scheme are 0.06 W m−2 and −2.45 W m−2, respectively, but could be more positive (by about 1.17 W m−2) if hygroscopic soot particles are allowed to nucleate ice particles. The change in liquid water path dominates the anthropogenic forcing in mixed-phase clouds.


2021 ◽  
Author(s):  
Minghui Zhang ◽  
Amina Khaled ◽  
Pierre Amato ◽  
Anne-Marie Delort ◽  
Barbara Ervens

<p>Primary biological aerosol particles (PBAPs) play an important role in mixed-phase clouds as they nucleate ice even at temperatures of T > -10 °C. Current parameterizations of PBAP ice nucleation are based on ice nucleation active surface site (INAS) densities that are derived from freezing experiments. However, only a small fraction of the PBAP surface is responsible for their ice nucleation activity, such as proteins of bacteria cells, fungal spores, pollen polysaccharides and other (unidentified) macromolecules. Based on literature data, we refine the INAS density parameterizations by further parameters:</p><p>1) We demonstrate that the ice nucleation activity of such individual macromolecules is much higher than that of PBAPs. It can be shown that INAS of PBAPs can be scaled by the surface fraction of these ice-nucleating molecules.</p><p>2) Previous studies suggested that ice nucleation activity tends to be higher for larger macromolecules and their aggregates. We show that these trends hold true for various groups of macromolecules that comprise PBAPs.</p><p>Based on these trends, we suggest a more refined parameterization for ice-nucleating macromolecules in different types of PBAPs and even for different species of bacteria, fungi, and pollen. This new parameterization can be considered a step towards a molecular-based approach to predict the ice nucleation activity of the macromolecules in PBAPs based on their biological and chemical properties.</p><p>We implement both the traditional INAS parameterization for complete PBAPs and our parameterization for individual molecules in an adiabatic cloud parcel model. The extent will be discussed to which the two parameterizations result in different cloud properties of mixed-phase clouds.</p>


2011 ◽  
Vol 11 (6) ◽  
pp. 2805-2816 ◽  
Author(s):  
M. Ebert ◽  
A. Worringen ◽  
N. Benker ◽  
S. Mertes ◽  
E. Weingartner ◽  
...  

Abstract. During an intensive campaign at the high alpine research station Jungfraujoch, Switzerland, in February/March 2006 ice particle residuals within mixed-phase clouds were sampled using the Ice-counterflow virtual impactor (Ice-CVI). Size, morphology, chemical composition, mineralogy and mixing state of the ice residual and the interstitial (i.e., non-activated) aerosol particles were analyzed by scanning and transmission electron microscopy. Ice nuclei (IN) were identified from the significant enrichment of particle groups in the ice residual (IR) samples relative to the interstitial aerosol. In terms of number lead-bearing particles are enriched by a factor of approximately 25, complex internal mixtures with silicates or metal oxides as major components by a factor of 11, and mixtures of secondary aerosol and carbonaceous material (C-O-S particles) by a factor of 2. Other particle groups (sulfates, sea salt, Ca-rich particles, external silicates) observed in the ice-residual samples cannot be assigned unambiguously as IN. Between 9 and 24% of all IR are Pb-bearing particles. Pb was found as major component in around 10% of these particles (PbO, PbCl2). In the other particles, Pb was found as some 100 nm sized agglomerates consisting of 3–8 nm sized primary particles (PbS, elemental Pb). C-O-S particles are present in the IR at an abundance of 17–27%. The soot component within these particles is strongly aged. Complex internal mixtures occur in the IR at an abundance of 9–15%. Most IN identified at the Jungfraujoch station are internal mixtures containing anthropogenic components (either as main or minor constituent), and it is concluded that admixture of the anthropogenic component is responsible for the increased IN efficiency within mixed phase clouds. The mixing state appears to be a key parameter for the ice nucleation behaviour that cannot be predicted from the sole knowledge of the main component of an individual particle.


2014 ◽  
Vol 6 (1) ◽  
pp. 223-248 ◽  
Author(s):  
Mikhail Ovchinnikov ◽  
Andrew S. Ackerman ◽  
Alexander Avramov ◽  
Anning Cheng ◽  
Jiwen Fan ◽  
...  

2017 ◽  
Vol 17 (24) ◽  
pp. 15199-15224 ◽  
Author(s):  
Larissa Lacher ◽  
Ulrike Lohmann ◽  
Yvonne Boose ◽  
Assaf Zipori ◽  
Erik Herrmann ◽  
...  

Abstract. In this work we describe the Horizontal Ice Nucleation Chamber (HINC) as a new instrument to measure ambient ice-nucleating particle (INP) concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T) and relative humidity (RH) in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw) of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi) of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l. ) to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %), relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 %) to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L−1; normalized to standard T of 273 K and pressure, p, of 1013 hPa) and 4.7 std L−1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC) of 2.2 std L−1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L−1 was measured during an event influenced by marine air, arriving at the JFJ from the North Sea and the Norwegian Sea. The contribution from anthropogenic or other sources can thereby not be ruled out. Second, INP concentrations up to 146.2 std L−1 were observed during a Saharan dust event. To our knowledge this is the first time that a clear enrichment in ambient INP concentration in remote regions of the atmosphere is observed during a time of marine air mass influence, suggesting the importance of marine particles on ice nucleation in the free troposphere.


2017 ◽  
Vol 17 (5) ◽  
pp. 3637-3658 ◽  
Author(s):  
Jesús Vergara-Temprado ◽  
Benjamin J. Murray ◽  
Theodore W. Wilson ◽  
Daniel O'Sullivan ◽  
Jo Browse ◽  
...  

Abstract. Ice-nucleating particles (INPs) are known to affect the amount of ice in mixed-phase clouds, thereby influencing many of their properties. The atmospheric INP concentration changes by orders of magnitude from terrestrial to marine environments, which typically contain much lower concentrations. Many modelling studies use parameterizations for heterogeneous ice nucleation and cloud ice processes that do not account for this difference because they were developed based on INP measurements made predominantly in terrestrial environments without considering the aerosol composition. Errors in the assumed INP concentration will influence the simulated amount of ice in mixed-phase clouds, leading to errors in top-of-atmosphere radiative flux and ultimately the climate sensitivity of the model. Here we develop a global model of INP concentrations relevant for mixed-phase clouds based on laboratory and field measurements of ice nucleation by K-feldspar (an ice-active component of desert dust) and marine organic aerosols (from sea spray). The simulated global distribution of INP concentrations based on these two species agrees much better with currently available ambient measurements than when INP concentrations are assumed to depend only on temperature or particle size. Underestimation of INP concentrations in some terrestrial locations may be due to the neglect of INPs from other terrestrial sources. Our model indicates that, on a monthly average basis, desert dusts dominate the contribution to the INP population over much of the world, but marine organics become increasingly important over remote oceans and they dominate over the Southern Ocean. However, day-to-day variability is important. Because desert dust aerosol tends to be sporadic, marine organic aerosols dominate the INP population on many days per month over much of the mid- and high-latitude Northern Hemisphere. This study advances our understanding of which aerosol species need to be included in order to adequately describe the global and regional distribution of INPs in models, which will guide ice nucleation researchers on where to focus future laboratory and field work.


Sign in / Sign up

Export Citation Format

Share Document