scholarly journals Hygroscopic properties and cloud condensation nuclei activity of atmospheric aerosols under the influences of Asian continental outflow and new particle formation at a coastal site in eastern Asia

2020 ◽  
Vol 20 (10) ◽  
pp. 5911-5922 ◽  
Author(s):  
Hing Cho Cheung ◽  
Charles Chung-Kuang Chou ◽  
Celine Siu Lan Lee ◽  
Wei-Chen Kuo ◽  
Shuenn-Chin Chang

Abstract. The chemical composition of fine particulate matter (PM2.5), the size distribution and number concentration of aerosol particles (NCN), and the number concentration of cloud condensation nuclei (NCCN) were measured at the northern tip of Taiwan during an intensive observation experiment from April 2017 to March 2018. The parameters of aerosol hygroscopicity (i.e., activation ratio, activation diameter and kappa of CCN) were retrieved from the measurements. Significant variations were found in the hygroscopicity of aerosols (kappa – κ – of 0.18–0.56, for water vapor supersaturation – SS – of 0.12 %–0.80 %), which were subject to various pollution sources, including aged air pollutants originating in eastern and northern China and transported by the Asian continental outflows and fresh particles emitted from local sources and distributed by land–sea breeze circulations as well as produced by processes of new particle formation (NPF). Cluster analysis was applied to the back trajectories of air masses to investigate their respective source regions. The results showed that aerosols associated with Asian continental outflows were characterized by lower NCN and NCCN values and by higher kappa values of CCN, whereas higher NCN and NCCN values with lower kappa values of CCN were observed in the aerosols associated with local air masses. Besides, it was revealed that the kappa value of CCN exhibited a decrease during the early stage of an event of new particle formation, which turned to an increasing trend over the later period. The distinct features in the hygroscopicity of aerosols were found to be consistent with the characteristics in the chemical composition of PM2.5. This study has depicted a clear seasonal characteristic of hygroscopicity and CCN activity under the influence of a complex mixture of pollutants from different regional and/or local pollution sources. Nevertheless, the mixing state and chemical composition of the aerosols critically influence the aerosol hygroscopicity, and further investigations are necessary to elucidate the atmospheric processing involved in the CCN activation in coastal areas.

2019 ◽  
Author(s):  
Hing Cho Cheung ◽  
Charles C.-K. Chou ◽  
Celine S. L. Lee ◽  
Wei-Chen Kuo ◽  
Shuenn-Chin Chang

Abstract. The chemical composition of fine particulate matters (PM2.5), the size distribution and number concentration of aerosol particles (NCN) and the number concentration of cloud condensation nuclei (NCCN) were measured at the northern tip of Taiwan Island during a campaign from April 2017 to March 2018. The parameters of aerosol hygroscopicity (i.e. activation ratio, activation diameter and kappa) were retrieved from the measurements. Significant variations were found in the hygroscopicity of aerosols, which were suggested be subject to various pollution sources, including aged air pollutants originating in the eastern/northern China and transported on the Asian continental outflows, fresh particles emitted from local sources and distributed by land-sea breeze circulations as well as produced by new particle formation (NPF) processes. Cluster analysis was applied to the backward trajectories of air masses to investigate their respective source regions. The results showed that the aerosols associated with Asian continental outflows were characterized with higher kappa values, whereas higher NCCN and NCN with lower kappa values were found for aerosols in local air masses. The distinct features in hygroscopicity were consistent with the characteristics in the chemical composition of PM2.5. Moreover, this study revealed that the nucleation mode particles from NPF could have participated in the enhancement of CCN activity, most likely by coagulating with sub-CCN particles, although the freshly produced particles were not favored for CCN activation due to their smaller sizes. Thus, the results of this study suggested that the NPF coupling with coagulation processes can significantly increase the NCCN in atmosphere.


2018 ◽  
Author(s):  
Vyoma Singla ◽  
Subrata Mukherjee ◽  
Adam Kristensson ◽  
Govindan Pandithurai ◽  
Kundan K. Dani ◽  
...  

Abstract. There is a lack of characterization of the aerosol population in Western India, how it is affected by meteorological parameters, and new particle formation and the influence on cloud condensation nuclei (CCN). For this reason, measurements of particle number size distribution, aerosol chemical composition, meteorology and cloud condensation nuclei number concentration were monitored at High Altitude Cloud Physics Laboratory (HACPL) in Mahabaleshwar mountain town in Western India between November 2016 and February 2017. Most air masses in this period originated from the Indian continent to the north-east of HACPL. New particle formation (NPF) events were observed on 47 days and mainly associated with these north-easterly air masses and high SO2 emissions and biomass burning activities, while weaker or non-NPF days were associated with westerly air masses and relatively higher influence of local air pollution. The growth of newly formed particles enhanced the mass concentration of secondary organic and inorganic species of aerosol particles. The mean growth rate, formation rate, condensation sink and coagulation loss for the 13 strongest events was found to be 2.58 ± 0.38 nm h−1, 2.82 ± 1.37 cm−3 s−1, 22.3 ± 2.87 * 10-3 s−1 and 1.62 ± 1.04 cm−3 s−1 respectively. A closer examination of 5 events showed that low relative humidity and solar radiation favoured new particle formation. These NPF events lead to a significant increase in CCN concentration (mean ~ 53 ± 36 %). The NanoMap method revealed that NPF took place up to several hundred kilometers upwind and to the north-east of HACPL.


2019 ◽  
Vol 19 (22) ◽  
pp. 14339-14364 ◽  
Author(s):  
Simonas Kecorius ◽  
Teresa Vogl ◽  
Pauli Paasonen ◽  
Janne Lampilahti ◽  
Daniel Rothenberg ◽  
...  

Abstract. In a warming Arctic the increased occurrence of new particle formation (NPF) is believed to originate from the declining ice coverage during summertime. Understanding the physico-chemical properties of newly formed particles, as well as mechanisms that control both particle formation and growth in this pristine environment, is important for interpreting aerosol–cloud interactions, to which the Arctic climate can be highly sensitive. In this investigation, we present the analysis of NPF and growth in the high summer Arctic. The measurements were made on-board research vessel Polarstern during the PS106 Arctic expedition. Four distinctive NPF and subsequent particle growth events were observed, during which particle (diameter in a range 10–50 nm) number concentrations increased from background values of approx. 40 up to 4000 cm−3. Based on particle formation and growth rates, as well as hygroscopicity of nucleation and the Aitken mode particles, we distinguished two different types of NPF events. First, some NPF events were favored by negative ions, resulting in more-hygroscopic nucleation mode particles and suggesting sulfuric acid as a precursor gas. Second, other NPF events resulted in less-hygroscopic particles, indicating the influence of organic vapors on particle formation and growth. To test the climatic relevance of NPF and its influence on the cloud condensation nuclei (CCN) budget in the Arctic, we applied a zero-dimensional, adiabatic cloud parcel model. At an updraft velocity of 0.1 m s−1, the particle number size distribution (PNSD) generated during nucleation processes resulted in an increase in the CCN number concentration by a factor of 2 to 5 compared to the background CCN concentrations. This result was confirmed by the directly measured CCN number concentrations. Although particles did not grow beyond 50 nm in diameter and the activated fraction of 15–50 nm particles was on average below 10 %, it could be shown that the sheer number of particles produced by the nucleation process is enough to significantly influence the background CCN number concentration. This implies that NPF can be an important source of CCN in the Arctic. However, more studies should be conducted in the future to understand mechanisms of NPF, sources of precursor gases and condensable vapors, as well as the role of the aged nucleation mode particles in Arctic cloud formation.


2021 ◽  
Vol 21 (14) ◽  
pp. 11289-11302
Author(s):  
Imre Salma ◽  
Wanda Thén ◽  
Máté Vörösmarty ◽  
András Zénó Gyöngyösi

Abstract. Collocated measurements using a condensation particle counter, differential mobility particle sizer and cloud condensation nuclei counter were realised in parallel in central Budapest from 15 April 2019 to 14 April 2020 to gain insight into the cloud activation properties of urban aerosol particles. The median total particle number concentration was 10.1 × 103 cm−3. The median concentrations of cloud condensation nuclei (CCN) at water vapour supersaturation (S) values of 0.1 %, 0.2 %, 0.3 %, 0.5 % and 1.0 % were 0.59, 1.09, 1.39, 1.80 and 2.5 × 103 cm−3, respectively. The CCN concentrations represented 7–27 % of all particles. The CCN concentrations were considerably larger but the activation fractions were systematically substantially smaller than observed in regional or remote locations. The effective critical dry particle diameters (dc,eff) were derived utilising the CCN concentrations and particle number size distributions. Their median values at the five supersaturation values considered were 207, 149, 126, 105 and 80 nm, respectively; all of these diameters were positioned within the accumulation mode of the typical particle number size distribution. Their frequency distributions revealed a single peak for which the geometric standard deviation increased monotonically with S. This broadening indicated high time variability in the activating properties of smaller particles. The frequency distributions also showed fine structure, with several compositional elements that seemed to reveal a consistent or monotonical tendency with S. The relationships between the critical S and dc,eff suggest that urban aerosol particles in Budapest with diameters larger than approximately 130 nm showed similar hydroscopicity to corresponding continental aerosol particles, whereas smaller particles in Budapest were less hygroscopic than corresponding continental aerosol particles. Only modest seasonal cycling in CCN concentrations and activation fractions was seen, and only for large S values. This cycling likely reflects changes in the number concentration, chemical composition and mixing state of the particles. The seasonal dependencies of dc,eff were featureless, indicating that the droplet activation properties of the urban particles remained more or less the same throughout the year. This is again different from what is seen in non-urban locations. Hygroscopicity parameters (κ values) were computed without determining the time-dependent chemical composition of the particles. The median values for κ were 0.15, 0.10, 0.07, 0.04 and 0.02, respectively, at the five supersaturation values considered. The averages suggested that the larger particles were considerably more hygroscopic than the smaller particles. We found that the κ values for the urban aerosol were substantially smaller than those previously reported for aerosols in regional or remote locations. All of these characteristics can be linked to the specific source composition of particles in cities. The relatively large variability in the hygroscopicity parameters for a given S emphasises that the individual values represent the CCN population in ambient air while the average hygroscopicity parameter mainly corresponds to particles with sizes close to the effective critical dry particle diameter.


Nature ◽  
2019 ◽  
Vol 574 (7778) ◽  
pp. 399-403 ◽  
Author(s):  
Christina J. Williamson ◽  
Agnieszka Kupc ◽  
Duncan Axisa ◽  
Kelsey R. Bilsback ◽  
ThaoPaul Bui ◽  
...  

2020 ◽  
Vol 20 (4) ◽  
pp. 2591-2601
Author(s):  
Fangqun Yu ◽  
Gan Luo ◽  
Arshad Arjunan Nair ◽  
James J. Schwab ◽  
James P. Sherman ◽  
...  

Abstract. Atmospheric particles can act as cloud condensation nuclei (CCN) and modify cloud properties and precipitation and thus indirectly impact the hydrological cycle and climate. New particle formation (NPF or nucleation), frequently observed at locations around the globe, is an important source of ultrafine particles and CCN in the atmosphere. In this study, wintertime NPF over the Northeastern United States (NEUS) is simulated with WRF-Chem coupled with a size-resolved (sectional) advanced particle microphysics (APM) model. Model-simulated variations in particle number concentrations during a 2-month period (November–December 2013) are in agreement with corresponding measurements taken at Pinnacle State Park (PSP), New York, and Appalachian State University (APP), North Carolina. We show that, even during wintertime, regional nucleation occurs and contributes significantly to ultrafine-particle and CCN number concentrations over the NEUS. The model shows that, due to low biogenic emissions during this period, wintertime regional nucleation is solely controlled by inorganic species and the newly developed ternary ion-mediated nucleation scheme is able to capture the variations in observed particle number concentrations (ranging from ∼200 to 20 000 cm−3) at both PSP and APP. Total particle and CCN number concentrations dramatically increase following NPF events and have the highest values over the Ohio Valley region, where elevated [SO2] is sustained by power plants. Secondary particles dominate particle number abundance over the NEUS, and their fraction increases with altitude from ≳85 % near the surface to ≳95 % in the upper troposphere. The secondary fraction of CCN also increases with altitude, from 20 %–50 % in the lower boundary layer to 50 %–60 % in the middle troposphere to 70 %–85 % in the upper troposphere.


2008 ◽  
Vol 8 (18) ◽  
pp. 5649-5667 ◽  
Author(s):  
M. J. Cubison ◽  
B. Ervens ◽  
G. Feingold ◽  
K. S. Docherty ◽  
I. M. Ulbrich ◽  
...  

Abstract. The relationship between cloud condensation nuclei (CCN) number and the physical and chemical properties of the atmospheric aerosol distribution is explored for a polluted urban data set from the Study of Organic Aerosols at Riverside I (SOAR-1) campaign conducted at Riverside, California, USA during summer 2005. The mixing state and, to a lesser degree, the average chemical composition are shown to be important parameters in determining the activation properties of those particles around the critical activation diameters for atmospherically-realistic supersaturation values. Closure between predictions and measurements of CCN number at several supersaturations is attempted by modeling a number of aerosol chemical composition and mixing state cases of increasing complexity. It is shown that a realistic treatment of the state of mixing of the urban aerosol distribution is critical in order to eliminate model bias. Fresh emissions such as elemental carbon and small organic particles must be treated as non-activating and explicitly accounted for in the model. The relative number concentration of these particles compared to inorganics and oxygenated organic compounds of limited hygroscopicity plays an important role in determining the CCN number. Furthermore, expanding the different composition/mixing state cases to predictions of cloud droplet number concentration in a cloud parcel model highlights the dependence of cloud optical properties on the state of mixing and hygroscopic properties of the different aerosol modes, but shows that the relative differences between the different cases are reduced compared to those from the CCN model.


Sign in / Sign up

Export Citation Format

Share Document