scholarly journals Bi-directional air-sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer

2016 ◽  
Author(s):  
Gerhard Lammel ◽  
Franz X. Meixner ◽  
Branislav Vrana ◽  
Christos Efstathiou ◽  
Jiři Kohoutek ◽  
...  

Abstract. As a consequence of long-range transported pollution air-sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in air of 14 species i.e., 4 parent polycyclic aromatic hydrocarbons (PAHs), 3 polychlorinated biphenyls (PCBs), 3 organochlorine pesticides (OCPs) and 2 polybrominated diphenylethers (PBDEs) in the gas-phase were quantified at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc/Δz > 0) indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for 3 PAHs, mostly during day-time, and for 2 OCPs, mostly during night-time, as well as for 1 PCB and 1 PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day/night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on Eddy covariance. Deposition fluxes ranged −28.5 − +1.8 μg m−2 d−1 for PAHs and −3.4 − +0.9 μg m−2 d−1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.

2016 ◽  
Vol 16 (10) ◽  
pp. 6381-6393 ◽  
Author(s):  
Gerhard Lammel ◽  
Franz X. Meixner ◽  
Branislav Vrana ◽  
Christos I. Efstathiou ◽  
Jiři Kohoutek ◽  
...  

Abstract. As a consequence of long-range transported pollution, air–sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in the air were quantified for 14 species, i.e. four parent polycyclic aromatic hydrocarbons (PAHs), three polychlorinated biphenyls (PCBs), three organochlorine pesticides (OCPs) and two polybrominated diphenylethers (PBDEs) in the gas-phase at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc∕Δz > 0), indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for three PAHs, mostly during daytime, and for two OCPs, mostly during night-time, as well as for one PCB and one PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day–night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on eddy covariance. Deposition fluxes ranged from −28.5 to +1.8 µg m−2 day−1 for PAHs and −3.4 to +0.9 µg m−2 day−1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.


2019 ◽  
Vol 19 (13) ◽  
pp. 8741-8758 ◽  
Author(s):  
Atallah Elzein ◽  
Rachel E. Dunmore ◽  
Martyn W. Ward ◽  
Jacqueline F. Hamilton ◽  
Alastair C. Lewis

Abstract. Ambient particulate matter (PM) can contain a mix of different toxic species derived from a wide variety of sources. This study quantifies the diurnal variation and nocturnal abundance of 16 polycyclic aromatic hydrocarbons (PAHs), 10 oxygenated PAHs (OPAHs) and 9 nitrated PAHs (NPAHs) in ambient PM in central Beijing during winter. Target compounds were identified and quantified using gas chromatography–time-of-flight mass spectrometry (GC-Q-ToF-MS). The total concentration of PAHs varied between 18 and 297 ng m−3 over 3 h daytime filter samples and from 23 to 165 ng m−3 in 15 h night-time samples. The total concentrations of PAHs over 24 h varied between 37 and 180 ng m−3 (mean: 97±43 ng m−3). The total daytime concentrations during high particulate loading conditions for PAHs, OPAHs and NPAHs were 224, 54 and 2.3 ng m−3, respectively. The most abundant PAHs were fluoranthene (33 ng m−3), chrysene (27 ng m−3), pyrene (27 ng m−3), benzo[a]pyrene (27 ng m−3), benzo[b]fluoranthene (25 ng m−3), benzo[a]anthracene (20 ng m−3) and phenanthrene (18 ng m−3). The most abundant OPAHs were 9,10-anthraquinone (18 ng m−3), 1,8-naphthalic anhydride (14 ng m−3) and 9-fluorenone (12 ng m−3), and the three most abundant NPAHs were 9-nitroanthracene (0.84 ng m−3), 3-nitrofluoranthene (0.78 ng m−3) and 3-nitrodibenzofuran (0.45 ng m−3). ∑PAHs and ∑OPAHs showed a strong positive correlation with the gas-phase abundance of NO, CO, SO2 and HONO, indicating that PAHs and OPAHs can be associated with both local and regional emissions. Diagnostic ratios suggested emissions from traffic road and coal combustion were the predominant sources of PAHs in Beijing and also revealed the main source of NPAHs to be secondary photochemical formation rather than primary emissions. PM2.5 and NPAHs showed a strong correlation with gas-phase HONO. 9-Nitroanthracene appeared to undergo a photodegradation during the daytime and showed a strong positive correlation with ambient HONO (R=0.90, P < 0.001). The lifetime excess lung cancer risk for those species that have available toxicological data (16 PAHs, 1 OPAH and 6 NPAHs) was calculated to be in the range 10−5 to 10−3 (risk per million people ranges from 26 to 2053 cases per year).


2009 ◽  
Vol 9 (9) ◽  
pp. 3075-3093 ◽  
Author(s):  
R. Sommariva ◽  
H. D. Osthoff ◽  
S. S. Brown ◽  
T. S. Bates ◽  
T. Baynard ◽  
...  

Abstract. This paper describes a modelling study of several HOx and NOx species (OH, HO2, organic peroxy radicals, NO3 and N2O5) in the marine boundary layer. A model based upon the Master Chemical Mechanism (MCM) was constrained to observations of chemical and physical parameters made onboard the NOAA ship R/V Brown as part of the New England Air Quality Study (NEAQS) in the summer of 2004. The model was used to calculate [OH] and to determine the composition of the peroxy radical pool. Modelled [NO3] and [N2O5] were compared to in-situ measurements by Cavity Ring-Down Spectroscopy. The comparison showed that the model generally overestimated the measurements by 30–50%, on average. The model results were analyzed with respect to several chemical and physical parameters, including uptake of NO3 and N2O5 on fog droplets and on aerosol, dry deposition of NO3 and N2O5, gas-phase hydrolysis of N2O5 and reactions of NO3 with NMHCs and peroxy radicals. The results suggest that fog, when present, is an important sink for N2O5 via rapid heterogeneous uptake. The comparison between the model and the measurements were consistent with values of the heterogeneous uptake coefficient of N2O5 (γN2O5)>1×10−2, independent of aerosol composition in this marine environment. The analysis of the different loss processes of the nitrate radical showed the important role of the organic peroxy radicals, which accounted for a significant fraction (median: 15%) of NO3 gas-phase removal, particularly in the presence of high concentrations of dimethyl sulphide (DMS).


2008 ◽  
Vol 8 (4) ◽  
pp. 16643-16692 ◽  
Author(s):  
R. Sommariva ◽  
H. D. Osthoff ◽  
S. S. Brown ◽  
T. S. Bates ◽  
T. Baynard ◽  
...  

Abstract. This paper describes a modelling study of several HOx and NOx species (OH, HO2, organic peroxy radicals, NO3 and N2O5) in the marine boundary layer. A model based upon the Master Chemical Mechanism (MCM) was constrained to observations of chemical and physical parameters made onboard the NOAA ship R/V Brown as part of the New England Air Quality Study (NEAQS) in the summer of 2004. The model was used to calculate [OH] and to determine the composition of the peroxy radical pool. Modelled [NO3] and [N2O5] were compared to in-situ measurements by Cavity Ring-Down Spectroscopy. The comparison showed that the model generally overestimated the measurements by 30–50%, on average. The model results were analyzed with respect to several chemical and physical parameters, including uptake of NO3 and N2O5 on fog droplets and on aerosol, dry deposition of NO3 and N2O5, gas-phase hydrolysis of N2O5 and reactions of NO3 with NMHCs and peroxy radicals. The results suggest that fog, when present, is an important sink for N2O5 via rapid heterogeneous uptake. The comparison between the model and the measurements were consistent with values of the heterogeneous uptake coefficient of N2O5 (γN2O5)>1×10−2, independent of aerosol composition in this marine environment. The analysis of the different loss processes of the nitrate radical showed the important role of the organic peroxy radicals, which accounted for a significant fraction (median: 15%) of NO3 gas-phase removal, particularly in the presence of high concentrations of dimethyl sulphide (DMS).


2018 ◽  
Vol 18 (21) ◽  
pp. 16081-16097 ◽  
Author(s):  
Lourdes Arellano ◽  
Pilar Fernández ◽  
Barend L. van Drooge ◽  
Neil L. Rose ◽  
Ulrike Nickus ◽  
...  

Abstract. Polycyclic aromatic hydrocarbons (PAHs) were analysed in bulk atmospheric deposition samples collected at four European high-mountain areas, Gossenköllesee (Tyrolean Alps), Redon (Central Pyrenees), Skalnate Pleso (High Tatra Mountains), and Lochnagar (Grampian Mountains) between 2004 and 2006. Sample collection was performed monthly in the first three sites and biweekly in Lochnagar. The number of sites, period of study and sampling frequency provide the most comprehensive description of PAH fallout in high mountain areas addressed so far. The average PAH deposition fluxes in Gossenköllesee, Redon and Lochnagar ranged between 0.8 and 2.1 µg m−2 month−1, and in Skalnate Pleso it was 9.7 µg m−2 month−1, showing the influence of substantial inputs from regional emission sources. The deposited distributions of PAHs were dominated by parent phenanthrene, fluoranthene and pyrene, representing 32 %–60 % of the total. The proportion of phenanthrene, the most abundant compound, was higher at the sites of lower temperature, Gossenköllesee and Skalnate Pleso, showing higher transfer from gas phase to particles of the more volatile PAHs. The sites with lower insolation, e.g. those located at lower altitude, were those with a higher proportion of photooxidable compounds such as benz[a]anthracene. According to the data analysed, precipitation is the main driver of PAH fallout. However, when rain and snow deposition were low, particle settling also constituted an efficient driver for PAH deposition. Redon and Lochnagar were the two sites receiving the highest amounts of rain and snow and the fallout of PAH fluxes was related to this precipitation. No significant association was observed between long-range backward air trajectories and PAH deposition in Lochnagar, but in Redon PAH fallout at higher precipitation was essentially related to air masses originating from the North Atlantic, which were dominant between November and May (cold season). In these cases, particle-normalised PAH fallout was also associated with higher precipitation as these air masses were concurrent with lower temperatures, which enhanced gas to particle partitioning transfer. In the warm season (June–October), most of the air masses arriving at Redon originated from the south and particle deposition was enhanced as consequence of Saharan inputs. In these cases, particle settling was also a driver of PAH deposition despite the low overall PAH content of the Saharan particles. In Gossenköllesee, the site receiving lowest precipitation, PAH fallout was also related to particle deposition. The particle-normalised PAH fluxes were significantly negatively correlated to temperature, e.g. for air masses originating from central and eastern Europe, showing a dominant transfer from gas phase to particles at lower temperatures, which enhanced PAH fallout, mainly of the most volatile hydrocarbons. Comparison of PAH atmospheric deposition and lacustrine sedimentary fluxes showed much higher values in the latter case of 24–100 µg m−2 yr−1 vs. 120–3000 µg m−2 yr−1. A strong significant correlation was observed between these two fluxes, which is consistent with a dominant origin related to atmospheric deposition at each site.


2019 ◽  
Author(s):  
Atallah El zein ◽  
Rachel Ellen Dunmore ◽  
Martyn William Ward ◽  
Jacqueline Fiona Hamilton ◽  
Alastair Charles Lewis

Abstract. Ambient particulate matter (PM) can contain a mix of different toxic species derived from a wide variety of sources. This study quantifies the variation in diurnal and nocturnal abundance of 16 Polycyclic Aromatic Hydrocarbons (PAHs), 10 Oxygenated PAHs (OPAHs) and 9 Nitrated PAHs (NPAHs) in ambient PM in central Beijing during winter. Target compounds were identified and quantified using Gas Chromatography – time of flight mass spectrometry (GC-Q-TOF-MS). The total concentration of PAHs varied between 18 and 297 ng m−3 over 3 h daytime filter samples and from 23 to 165 ng m−3 in 15 h night-time samples. The total concentrations of PAHs over 24 h varied between 37 and 180 ng m−3 (mean: 97 ng m−3). The total daytime concentrations during high particulate loading conditions for PAHs, OPAHs and NPAHs were 224, 54, and 2.3 ng m−3, respectively. The most abundant PAHs were fluoranthene (33 ng m−3), chrysene (27 ng m−3), pyrene (27 ng m−3), benzo(a)pyrene (27 ng m−3), benzo[b]fluoranthene (25 ng m−3), benzo[a]anthracene (20 ng m−3) and phenanthrene (18 ng m−3). 9,10-Anthraquinone (18 ng m−3), 1,8 Naphthalic anhydride (14 ng m−3) and 9-Fluorenone (12 ng m−3) were the three major OPAHs species, while 9-Nitroanthracene (0.84 ng m−3), 3-Nitrofluoranthene (0.78 ng m−3) and 3-Nitrodibenzofuran (0.45 ng m−3) were the three most abundant NPAHs. ∑PAHs and ∑OPAHs showed a strong positive correlation with the gas phase abundance of NO, CO, SO2, and HONO indicating that PAHs and OPAHs can be associated with both local and regional emissions. Diagnostic ratios suggested emissions from traffic road and coal combustion were the predominant sources for PAHs in Beijing, and also revealed the dominant source of NPAHs was secondary photochemical formation rather than primary emissions. PM2.5 and NPAHs showed a strong correlation with gas phase HONO. 9-Nitroanthracene appeared to undergo a photodegradation during the daytime and has shown a strong positive correlation with ambient HONO (R = 0.90, P 


2018 ◽  
Author(s):  
Lourdes Arellano ◽  
Pilar Fernández ◽  
Barend L. van Drooge ◽  
Neil L. Rose ◽  
Ulrike Nickus ◽  
...  

Abstract. Polycyclic aromatic hydrocarbons (PAHs) were analyzed in bulk atmospheric deposition samples collected at four European high mountain areas, Gossenköllesee (Tyrolean Alps), Redon (Central Pyrenees), Skalnate Pleso (High Tatra Mountains) and Lochnagar (Grampian Mountains) between 2004 and 2006. Sample collection was performed monthly in the first three sites and biweekly in Lochnagar. The number of sites, period of study and sampling frequency provide the most comprehensive description of PAH fallout in high mountain areas addressed so far. The average PAH deposition fluxes in Gossenköllesee, Redon and Lochnagar ranged between 0.8–2.1 µg m−2 mo−1, and in Skalnate Pleso it was 9.7 µg m−2 mo−1, showing the influence of substantial inputs from regional emission sources. The deposited distributions of PAH were dominated by parent phenanthrene, fluoranthene and pyrene, representing 32–60 % of total. The proportion of phenanthrene, the most abundant compound, was higher at the sites of lower temperature, Gossenköllesee and Skalnate Pleso, showing higher transfer from gas phase to particles of the more volatile PAHs. The sites with lower insolation, e.g. those located at lower altitude, were those with higher proportion of photooxidable compounds such as benz[a]anthracene. According to the data analysed, precipitation is the main driver of PAH fallout. However, when rain and snow deposition were low, particle settling also constitutes an efficient driver for PAH deposition. Redon and Lochnagar were the two sites receiving highest rain and snow and the fallout of PAH fluxes was related to this precipitation. No significant association was observed between long-range backward air trajectories and PAH deposition in Lochnagar, but in Redon PAH fallout at higher precipitation was essentially related with air masses originating from the North Atlantic, which were dominant between November and May (cold season). In these cases, particle normalized PAH fallout was also associated to higher precipitation as these air masses were concurrent with lower temperatures, which enhanced gas to particle partitioning transfer. In the warm season (June–October), most of the air masses arriving to Redon originated from the south and particle deposition was enhanced as consequence of Saharan inputs. In these cases, particle settling was also a driver of PAH deposition despite the low overall PAH content of the Saharan particles. In Gossenköllesee, the site receiving lowest precipitation, PAH fallout was also related to particle deposition. The particle normalized PAH fluxes were significantly negatively correlated to temperature, e.g. for air masses originating from Central/Eastern Europe, showing a dominant transfer from gas phase to particles at lower temperatures, which enhanced PAH fallout, mainly of the most volatile hydrocarbons. Comparison of PAH atmospheric deposition and lacustrine sedimentary fluxes showed much higher values in the latter case, 24–100 µg m−2 yr−1 vs. 120–3000 µg m−2 yr−1, respectively. A strong significant correlation was observed between these two fluxes which is consistent with a dominant origin related with atmospheric deposition at each site.


2020 ◽  
Author(s):  
Oisin Shiels ◽  
P. D. Kelly ◽  
Cameron C. Bright ◽  
Berwyck L. J. Poad ◽  
Stephen Blanksby ◽  
...  

<div> <div> <div> <p>A key step in gas-phase polycyclic aromatic hydrocarbon (PAH) formation involves the addition of acetylene (or other alkyne) to σ-type aromatic radicals, with successive additions yielding more complex PAHs. A similar process can happen for N- containing aromatics. In cold diffuse environments, such as the interstellar medium, rates of radical addition may be enhanced when the σ-type radical is charged. This paper investigates the gas-phase ion-molecule reactions of acetylene with nine aromatic distonic σ-type radical cations derived from pyridinium (Pyr), anilinium (Anl) and benzonitrilium (Bzn) ions. Three isomers are studied in each case (radical sites at the ortho, meta and para positions). Using a room temperature ion trap, second-order rate coefficients, product branching ratios and reaction efficiencies are reported. </p> </div> </div> </div>


ACS Omega ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 2410-2419
Author(s):  
Junyao Li ◽  
Narcisse T. Tsona ◽  
Shanshan Tang ◽  
Xiuhui Zhang ◽  
Lin Du

Sign in / Sign up

Export Citation Format

Share Document