scholarly journals Supplementary material to "Impacts of historical climate and land cover changes on fine particulate matter (PM<sub>2.5</sub>) air quality in East Asia over 1980–2010"

Author(s):  
Yu Fu ◽  
Amos P. K. Tai ◽  
Hong Liao
2016 ◽  
Author(s):  
Yu Fu ◽  
Amos P. K. Tai ◽  
Hong Liao

Abstract. To examine the effects of changes in climate, land cover and land use (LCLU), and anthropogenic emissions on fine particulate matter (PM2.5) between the 5-year periods 1981–1985 and 2007–2011 in East Asia, we perform a series of simulations using a global chemical transport model (GEOS-Chem) driven by assimilated meteorological data and a suite of land cover and land use data. Our results indicate that climate change alone could lead to a decrease in wintertime PM2.5 concentration by 4.0–12.0 μg m−3 in northern China, but an increase in summertime PM2.5 by 6.0–8.0 μg m−3 in those regions. These changes are attributable to the changing chemistry and transport of all PM2.5 components driven by long-term trends in temperature, wind speed and mixing depth. The concentration of secondary organic aerosol (SOA) is simulated to increase by 0.2–0.8 μg m−3 in both summer and winter in most regions of East Asia due to climate change alone, mostly reflecting higher biogenic volatile organic compound (VOC) emissions under warming. The impacts of LCLU change alone on PM2.5 (−2.1 to +1.3 μg m−3) are smaller than that of climate change, but among the various components the sensitivity of SOA and thus organic carbon to LCLU change (−0.4 to +1.2 μg m−3) is quite significant especially in summer, which is driven mostly by changes in biogenic VOC emissions following cropland expansion and changing vegetation density. The combined impacts show that while the effect of climate change on PM2.5 air quality is more pronounced, LCLU change could offset part of the climate effect in some regions but exacerbate it in others. As a result of both climate and LCLU changes combined, PM2.5 levels are estimated to change by −12.0 to +12.0 μg m−3 across East Asia between the two periods. Changes in anthropogenic emissions remain the largest contributor to deteriorating PM2.5 air quality in East Asia during the study period, but climate and LCLU changes could lead to a substantial modification of PM2.5 levels.


2016 ◽  
Vol 16 (16) ◽  
pp. 10369-10383 ◽  
Author(s):  
Yu Fu ◽  
Amos P. K. Tai ◽  
Hong Liao

Abstract. To examine the effects of changes in climate, land cover and land use (LCLU), and anthropogenic emissions on fine particulate matter (PM2.5) between the 5-year periods 1981–1985 and 2007–2011 in East Asia, we perform a series of simulations using a global chemical transport model (GEOS-Chem) driven by assimilated meteorological data and a suite of land cover and land use data. Our results indicate that climate change alone could lead to a decrease in wintertime PM2.5 concentration by 4.0–12.0 µg m−3 in northern China, but to an increase in summertime PM2.5 by 6.0–8.0 µg m−3 in those regions. These changes are attributable to the changing chemistry and transport of all PM2.5 components driven by long-term trends in temperature, wind speed and mixing depth. The concentration of secondary organic aerosol (SOA) is simulated to increase by 0.2–0.8 µg m−3 in both summer and winter in most regions of East Asia due to climate change alone, mostly reflecting higher biogenic volatile organic compound (VOC) emissions under warming. The impacts of LCLU change alone on PM2.5 (−2.1 to +1.3 µg m−3) are smaller than that of climate change, but among the various components the sensitivity of SOA and thus organic carbon to LCLU change (−0.4 to +1.2 µg m−3) is quite significant especially in summer, which is driven mostly by changes in biogenic VOC emissions following cropland expansion and changing vegetation density. The combined impacts show that while the effect of climate change on PM2.5 air quality is more pronounced, LCLU change could offset part of the climate effect in some regions but exacerbate it in others. As a result of both climate and LCLU changes combined, PM2.5 levels are estimated to change by −12.0 to +12.0 µg m−3 across East Asia between the two periods. Changes in anthropogenic emissions remain the largest contributor to deteriorating PM2.5 air quality in East Asia during the study period, but climate and LCLU changes could lead to a substantial modification of PM2.5 levels.


2021 ◽  
Author(s):  
Drew C. Pendergrass ◽  
Daniel J. Jacob ◽  
Shixian Zhai ◽  
Jhoon Kim ◽  
Ja-Ho Koo ◽  
...  

Abstract. We use 2011–2019 aerosol optical depth (AOD) observations from the Geostationary Ocean Color Imager (GOCI) instrument over East Asia to infer 24-h daily surface fine particulate matter (PM2.5) concentrations at continuous 6x6 km2 resolution over eastern China, South Korea, and Japan. This is done with a random forest (RF) algorithm applied to the gap-filled GOCI AODs and other data and trained with PM2.5 observations from the three national networks. The predicted 24-h PM2.5 concentrations for sites entirely withheld from training in a ten-fold crossvalidation procedure correlate highly with network observations (R2 = 0.89) with single-value precision of 26–32 % depending on country. Prediction of annual mean values has R2 = 0.96 and single-value precision of 12 %. The RF algorithm is only moderately successful for diagnosing local exceedances of the National Ambient Air Quality Standard (NAAQS) because these exceedances are typically within the single-value precisions of the RF, and also because of RF smoothing of extreme PM2.5 concentrations. The area-weighted and population-weighted trends of RF PM2.5 concentrations for eastern China, South Korea, and Japan show steady 2015–2019 declines consistent with surface networks, but the surface networks in eastern China and South Korea underestimate population exposure. Further examination of RF PM2.5 fields for South Korea identifies hotspots where surface network sites were initially lacking and shows 2015–2019 PM2.5 decreases across the country except for flat concentrations in the Seoul metropolitan area. Inspection of monthly PM2.5 time series in Beijing, Seoul, and Tokyo shows that the RF algorithm successfully captures observed seasonal variations of PM2.5 even though AOD and PM2.5 often have opposite seasonalities. Application of the RF algorithm to urban pollution episodes in Seoul and Beijing demonstrates high skill in reproducing the observed day-to-day variations in air quality as well as spatial patterns on the 6 km scale. Comparison to a CMAQ simulation for the Korean peninsula demonstrates the value of the continuous RF PM2.5 fields for testing air quality models, including over North Korea where they offer a unique resource.


2021 ◽  
Author(s):  
Shixian Zhai ◽  
Daniel J. Jacob ◽  
Jared F. Brewer ◽  
Ke Li ◽  
Jonathan M. Moch ◽  
...  

Abstract. Geostationary satellite sensors over East Asia (GOCI and AHI) are now providing continuous mapping of aerosol optical depth (AOD) at 550 nm to improve monitoring of fine particulate matter (PM2.5) air quality. Here we evaluate our understanding of the physical relationships between AOD and PM2.5 over East Asia by using the GEOS-Chem atmospheric chemistry model to simulate observations from multiple sources: 1) the joint NASA-NIER Korea – United States Air Quality aircraft campaign over South Korea (KORUS-AQ; May–June 2016); 2) AODs from the AERONET ground-based network; 3) AOD from a new GOCI/AHI fused product; and 4) surface PM2.5 networks in South Korea and China. The KORUS-AQ data show that 550 nm AOD is mainly contributed by sulfate-nitrate-ammonium (SNA) and organic aerosols in the planetary boundary layer (PBL), despite large dust concentrations in the free troposphere, reflecting the optically effective size and the high hygroscopicity of the PBL aerosols. Although GEOS-Chem is successful in reproducing the KORUS-AQ vertical profiles of aerosol mass, its ability to link AOD to PM2.5 is limited by under-accounting of coarse PM and by a large overestimate of nighttime PM2.5 nitrate. A broader analysis of the GOCI/AHI AOD data over East Asia in different seasons shows agreement with AERONET AODs and a spatial distribution consistent with surface PM2.5 network data. The AOD observations over North China show a summer maximum and winter minimum, opposite in phase to surface PM2.5. This is due to low PBL depths compounded by high residential coal emissions in winter, and high relative humidity (RH) in summer. Seasonality of AOD and PM2.5 over South Korea is much weaker, reflecting weaker variation of PBL depth and lack of residential coal emissions. Physical interpretation of the satellite AOD data in terms of surface PM2.5 is sensitive to accurate information on aerosol size distributions, PBL depths, RH, the role of coarse particles, and diurnal variation of PM2.5.


2021 ◽  
Vol 13 (15) ◽  
pp. 2981
Author(s):  
Jeanné le Roux ◽  
Sundar Christopher ◽  
Manil Maskey

Planet, a commercial company, has achieved a key milestone by launching a large fleet of small satellites (smallsats) that provide high spatial resolution imagery of the entire Earth’s surface on a daily basis with its PlanetScope sensors. Given the potential utility of these data, this study explores the use for fine particulate matter (PM2.5) air quality applications. However, before these data can be utilized for air quality applications, key features of the data, including geolocation accuracy, calibration quality, and consistency in spectral signatures, need to be addressed. In this study, selected Dove-Classic PlanetScope data is screened for geolocation consistency. The spectral response of the Dove-Classic PlanetScope data is then compared to Moderate Resolution Imaging Spectroradiometer (MODIS) data over different land cover types, and under varying PM2.5 and mid visible aerosol optical depth (AOD) conditions. The data selected for this study was found to fall within Planet’s reported geolocation accuracy of 10 m (between 3–4 pixels). In a comparison of top of atmosphere (TOA) reflectance over a sample of different land cover types, the difference in reflectance between PlanetScope and MODIS ranged from near-zero (0.0014) to 0.117, with a mean difference in reflectance of 0.046 ± 0.031 across all bands. The reflectance values from PlanetScope were higher than MODIS 78% of the time, although no significant relationship was found between surface PM2.5 or AOD and TOA reflectance for the cases that were studied. The results indicate that commercial satellite data have the potential to address Earth-environmental issues.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 302
Author(s):  
Rajesh Kumar ◽  
Piyush Bhardwaj ◽  
Gabriele Pfister ◽  
Carl Drews ◽  
Shawn Honomichl ◽  
...  

This paper describes a quasi-operational regional air quality forecasting system for the contiguous United States (CONUS) developed at the National Center for Atmospheric Research (NCAR) to support air quality decision-making, field campaign planning, early identification of model errors and biases, and support the atmospheric science community in their research. This system aims to complement the operational air quality forecasts produced by the National Oceanic and Atmospheric Administration (NOAA), not to replace them. A publicly available information dissemination system has been established that displays various air quality products, including a near-real-time evaluation of the model forecasts. Here, we report the performance of our air quality forecasting system in simulating meteorology and fine particulate matter (PM2.5) for the first year after our system started, i.e., 1 June 2019 to 31 May 2020. Our system shows excellent skill in capturing hourly to daily variations in temperature, surface pressure, relative humidity, water vapor mixing ratios, and wind direction but shows relatively larger errors in wind speed. The model also captures the seasonal cycle of surface PM2.5 very well in different regions and for different types of sites (urban, suburban, and rural) in the CONUS with a mean bias smaller than 1 µg m−3. The skill of the air quality forecasts remains fairly stable between the first and second days of the forecasts. Our air quality forecast products are publicly available at a NCAR webpage. We invite the community to use our forecasting products for their research, as input for urban scale (<4 km), air quality forecasts, or the co-development of customized products, just to name a few applications.


Sign in / Sign up

Export Citation Format

Share Document