scholarly journals Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions

Author(s):  
Nicolas Bellouin ◽  
Laura Baker ◽  
Øivind Hodnebrog ◽  
Dirk Olivié ◽  
Ribu Cherian ◽  
...  

Abstract. Dedicated model simulations by four general circulation and chemistry-transport models are used to establish a matrix of specific radiative forcing, defined as the radiative forcing per unit change in mass emitted, as a function of the near-term climate forcer emitted, its source region, and the season of emission. Emissions of eight near-term climate forcers are reduced: sulphur dioxide, the precursor to sulphate aerosols; black carbon aerosols; organic carbon aerosols; ammonia, a precursor to nitrate aerosols; methane; and nitrogen oxides, carbon monoxide, and volatile organic compounds, the precursors to ozone and to secondary organic aerosols. The focus is on two source regions, Europe and East Asia, but the shipping sector and global averages are also included. Emission reductions are applied over two time periods: May–Oct and Nov–Apr. Models generally agree on the sign and ranking of specific radiative forcing for different emitted species, but disagree quantitatively. Black carbon aerosols, methane, and carbon monoxide exert positive specific radiative forcings. Black carbon exerts the strongest specific radiative forcing, even after accounting for rapid adjustments from the semi-direct effect, and is most efficient in local summer. However, although methane and carbon monoxide are less efficient in a specific sense, the potential for decreasing the mass emitted is larger. Organic carbon aerosols, sulphur dioxide, ammonia, and emissions by the shipping sector exert negative specific radiative forcings, with local summer emission changes being again more efficient. Ammonia is notable for its weak specific radiative forcing. For aerosols, specific radiative forcing exerted by European emissions is stronger than for East Asia, because the European baseline is less polluted. Radiative forcing of European and East Asian emission reductions is mainly exerted in the mid-latitudes of the Northern Hemisphere, but atmospheric transport yields sizeable radiative forcings in neighbouring regions, such as the Arctic. Models disagree on the sign of the net radiative forcing exerted by reductions in the emissions of nitrogen oxides and volatile organic compounds, because those reductions trigger complex changes in the oxidising capacity of the atmosphere, translating into radiative forcings by aerosols, methane, and ozone of different signs. The response of nitrate aerosols to nitrogen oxide reductions is particularly important in determining the sign of the corresponding radiative forcing. Model diversity comes from different modelled lifetimes, different unperturbed baselines, and different numbers of species and radiative forcing mechanisms represented. The strength of the aerosol-chemistry coupling is also diverse, translating into aerosol responses to perturbations of ozone precursors of different magnitudes.

2021 ◽  
Vol 21 (2) ◽  
pp. 853-874
Author(s):  
Gillian D. Thornhill ◽  
William J. Collins ◽  
Ryan J. Kramer ◽  
Dirk Olivié ◽  
Ragnhild B. Skeie ◽  
...  

Abstract. This paper quantifies the pre-industrial (1850) to present-day (2014) effective radiative forcing (ERF) of anthropogenic emissions of NOX, volatile organic compounds (VOCs; including CO), SO2, NH3, black carbon, organic carbon, and concentrations of methane, N2O and ozone-depleting halocarbons, using CMIP6 models. Concentration and emission changes of reactive species can cause multiple changes in the composition of radiatively active species: tropospheric ozone, stratospheric ozone, stratospheric water vapour, secondary inorganic and organic aerosol, and methane. Where possible we break down the ERFs from each emitted species into the contributions from the composition changes. The ERFs are calculated for each of the models that participated in the AerChemMIP experiments as part of the CMIP6 project, where the relevant model output was available. The 1850 to 2014 multi-model mean ERFs (± standard deviations) are −1.03 ± 0.37 W m−2 for SO2 emissions, −0.25 ± 0.09 W m−2 for organic carbon (OC), 0.15 ± 0.17 W m−2 for black carbon (BC) and −0.07 ± 0.01 W m−2 for NH3. For the combined aerosols (in the piClim-aer experiment) it is −1.01 ± 0.25 W m−2. The multi-model means for the reactive well-mixed greenhouse gases (including any effects on ozone and aerosol chemistry) are 0.67 ± 0.17 W m−2 for methane (CH4), 0.26 ± 0.07 W m−2 for nitrous oxide (N2O) and 0.12 ± 0.2 W m−2 for ozone-depleting halocarbons (HC). Emissions of the ozone precursors nitrogen oxides (NOx), volatile organic compounds and both together (O3) lead to ERFs of 0.14 ± 0.13, 0.09 ± 0.14 and 0.20 ± 0.07 W m−2 respectively. The differences in ERFs calculated for the different models reflect differences in the complexity of their aerosol and chemistry schemes, especially in the case of methane where tropospheric chemistry captures increased forcing from ozone production.


2011 ◽  
Vol 116 (D15) ◽  
Author(s):  
L. K. Sahu ◽  
Y. Kondo ◽  
Y. Miyazaki ◽  
Prapat Pongkiatkul ◽  
N. T. Kim Oanh

2020 ◽  
Vol 11 (8) ◽  
pp. 1408-1417
Author(s):  
M.P. Raju ◽  
P.D. Safai ◽  
S.M. Sonbawne ◽  
P.S. Buchunde ◽  
G. Pandithurai ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Daniel Almarcha ◽  
Manuel Almarcha ◽  
Elena Jimenez-Coloma ◽  
Laura Vidal ◽  
Montserrat Puigcercós ◽  
...  

The objective of the present work was to assess the odoriferous volatile organic compounds depuration efficiency of an experimental nonthermal plasma coupled to a catalytic system used for odor abatement of real emissions from a leachate thermal drying plant installed in an urban solid waste landfill. VOC screening was performed by means of HRGC-MS analysis of samples taken at the inlet and at the outlet of the nonthermal plasma system. Odor concentration by means of dynamic olfactometry, total organic carbon, mercaptans, NH3, and H2S were also determined in order to assess the performance of the system throughout several days. Three plasma frequencies (100, 150, and 200 Hz) and two catalyst temperatures (150°C and 50°C) were also tested. Under conditions of maximum capacity of the treatment system, the results show VOC depuration efficiencies around 69%, with average depuration efficiencies between 44 and 95% depending on the chemical family of the substance. Compounds belonging to the following families have been detected in the samples: organic acids, alcohols, ketones, aldehydes, pyrazines, and reduced sulphur compounds, among others. Average total organic carbon removal efficiency was 88%, while NH3and H2S removal efficiencies were 88% and 87%, respectively, and odor concentration abatement was 78%.


2010 ◽  
Vol 10 (15) ◽  
pp. 7439-7456 ◽  
Author(s):  
S. E. Bauer ◽  
S. Menon ◽  
D. Koch ◽  
T. C. Bond ◽  
K. Tsigaridis

Abstract. Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is −0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between −0.32 to −0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.


2012 ◽  
Vol 58 ◽  
pp. 45-55 ◽  
Author(s):  
Min Young Kim ◽  
Seung-Bok Lee ◽  
Gwi-Nam Bae ◽  
Seung Shik Park ◽  
Kyung Man Han ◽  
...  

2012 ◽  
Vol 12 (3) ◽  
pp. 6909-6955
Author(s):  
A. Fortems-Cheiney ◽  
F. Chevallier ◽  
I. Pison ◽  
P. Bousquet ◽  
M. Saunois ◽  
...  

Abstract. For the first time, carbon monoxide (CO) and formaldehyde (HCHO) satellite retrievals have been used together with methane (CH4) and methyl choloroform (CH3CCl3 or MCF) surface measurements in a complex inversion system. The CO and HCHO are, respectively from MOPITT and OMI instruments. The multi-species and multi-satellite dataset inversion is done for the 2005–2008 period. The robustness of our results is evaluated by comparing our posterior-modeled concentrations with several sets of independent measurements of atmospheric mixing ratios. The inversion results lead to significant changes from the prior to the posterior, in terms of magnitude and seasonality of the CO and CH4 surface fluxes and of the 3-D HCHO production by non-methane volatile organic compounds (NMVOCs). The latter is significantly decreased, indicating an overestimation of the biogenic NMVOCs emissions, such as isoprene, in the GEIA inventory. CO and CH4 surface emissions are increased by the inversion, from 1037 to 1409 Tg CO and from 489 to 528 TgCH4 on average for the 2005–2008 period. CH4 emissions present significant interannual variability and a joint CO–CH4 fluxes analysis reveals that tropical biomass burning probably played a role in the recent increase of atmospheric methane.


Sign in / Sign up

Export Citation Format

Share Document