Review of the manuscript titled “Cloud droplet activation of black carbon particles coated with organic compounds of varying solubility” by Dalirian et al.

2018 ◽  
Author(s):  
Anonymous
Author(s):  
Shikha Uniyal Gairola ◽  
Siddharth Shankar Bhatt

Black carbon is a potent climate-warming component of particulate matter formed by the incomplete combustion of fossil-fuels, wood and other fuels. Complete combustion would turn all the carbon in the fuel into carbon dioxide, but combustion is never complete, and CO2, CO, volatile organic compounds, organic compounds, and black carbon particles are formed in the process. It contributes to warming by converting incoming solar radiation to heat. When deposited on ice and snow, BC and co-emitted particles reduce surface albedo thereby melting the glaciers. The complex mixture of particulate matter resulting from incomplete combustion is referred as soot. When suspended in the atmosphere, black carbon contributes to warming by converting incoming solar radiations to heat. It also influences cloud formation and impacts regional circulation and rainfall pattern. The Artic and the glaciated regions such as Himalayas are particularly vulnerable to melting as a result. The present paper aims to review the work done on black carbon and its mitigation measure.


2012 ◽  
Vol 12 (7) ◽  
pp. 3253-3260 ◽  
Author(s):  
D. O. Topping ◽  
G. McFiggans

Abstract. The substantial uncertainty in the indirect effect of aerosol particles on radiative forcing in large part arises from the influences of atmospheric aerosol particles on (i) the brightness of clouds, exerting significant shortwave cooling with no appreciable compensation in the long wave, and on (ii) their ability to precipitate, with implications for cloud cover and lifetime. Predicting the ambient conditions at which aerosol particles may become cloud droplets is largely reliant on an equilibrium relationship derived by Köhler (1936). However, the theoretical basis of the relationship restricts its application to particles solely comprising involatile compounds and water, whereas a substantial fraction of particles in the real atmosphere will contain potentially thousands of semi-volatile organic compounds in addition to containing semi-volatile inorganic components such as ammonium nitrate. We show that equilibration of atmospherically reasonable concentrations of organic compounds with a growing particle as the ambient humidity increases has potentially larger implications on cloud droplet formation than any other equilibrium compositional dependence, owing to inextricable linkage between the aerosol composition, a particles size and concentration under ambient conditions. Whilst previous attempts to account for co-condensation of gases other than water vapour have been restricted to one inorganic condensate, our method demonstrates that accounting for the co-condensation of any number of organic compounds substantially decreases the saturation ratio of water vapour required for droplet activation. This effect is far greater than any other compositional dependence; more so even than the unphysical effect of surface tension reduction in aqueous organic mixtures, ignoring differences in bulk and surface surfactant concentrations.


2015 ◽  
Vol 15 (3) ◽  
pp. 1367-1383 ◽  
Author(s):  
J. C. Schroder ◽  
S. J. Hanna ◽  
R. L. Modini ◽  
A. L. Corrigan ◽  
S. M. Kreidenwies ◽  
...  

Abstract. Size-resolved observations of aerosol particles and cloud droplet residuals were studied at a marine boundary layer site (251 m a.m.s.l.) in La Jolla, San Diego, California, during 2012. A counterflow virtual impactor (CVI) was used as the inlet to sample cloud residuals while a total inlet was used to sample both cloud residuals and interstitial particles. Two cloud events totaling 10 h of in-cloud sampling were analyzed. Based on bulk aerosol particle concentrations, mass concentrations of refractory black carbon (rBC), and back trajectories, the two air masses sampled were classified as polluted marine air. Since the fraction of cloud droplets sampled by the CVI was less than 100%, the measured activated fractions of rBC should be considered as lower limits to the total fraction of rBC activated during the two cloud events. Size distributions of rBC and a coating analysis showed that sub-100 nm rBC cores with relatively thick coatings were incorporated into the cloud droplets (i.e., 95 nm rBC cores with median coating thicknesses of at least 65 nm were incorporated into the cloud droplets). Measurements also show that the coating volume fraction of rBC cores is relatively large for sub-100 nm rBC cores. For example, the median coating volume fraction of 95 nm rBC cores incorporated into cloud droplets was at least 0.9, a result that is consistent with κ-Köhler theory. Measurements of the total diameter of the rBC-containing particles (rBC core and coating) suggest that the total diameter of rBC-containing particles needed to be at least 165 nm to be incorporated into cloud droplets when the core rBC diameter is ≥ 85 nm. This result is consistent with previous work that has shown that particle diameter is important for activation of non-rBC particles. The activated fractions of rBC determined from the measurements ranged from 0.01 to 0.1 for core rBC diameters ranging from 70 to 220 nm. This type of data is useful for constraining models used for predicting rBC concentrations in the atmosphere.


2004 ◽  
Vol 4 (8) ◽  
pp. 2107-2117 ◽  
Author(s):  
R. Sorjamaa ◽  
B. Svenningsson ◽  
T. Raatikainen ◽  
S. Henning ◽  
M. Bilde ◽  
...  

Abstract. Atmospheric aerosol particles typically consist of inorganic salts and organic material. The inorganic compounds as well as their hygroscopic properties are well defined, but the effect of organic compounds on cloud droplet activation is still poorly characterized. The focus of the present study is the organic compounds that are surface active i.e. tend to concentrate on droplet surface and decrease the surface tension. Gibbsian surface thermodynamics was used to find out how partitioning between droplet surface and the bulk of the droplet affects the surface tension and the surfactant bulk concentration in droplets large enough to act as cloud condensation nuclei. Sodium dodecyl sulfate (SDS) was used together with sodium chloride to investigate the effect of surfactant partitioning on the Raoult effect (solute effect). While accounting for the surface to bulk partitioning is known to lead to lowered bulk surfactant concentration and thereby to increased surface tension compared to a case in which the partitioning is neglected, the present results show that the partitioning also alters the Raoult effect, and that the change is large enough to further increase the critical supersaturation and hence decrease cloud droplet activation. The fraction of surfactant partitioned to droplet surface increases with decreasing droplet size, which suggests that surfactants might enhance the activation of larger particles relatively more thus leading to less dense clouds. Cis-pinonic acid-ammonium sulfate aqueous solutions were studied in order to study the partitioning with compounds found in the atmosphere and to find out the combined effects of dissolution and partitioning behavior. The results show that the partitioning consideration presented in this paper alters the shape of the Köhler curve when compared to calculations in which the partitioning is neglected either completely or in the Raoult effect. In addition, critical supersaturation was measured for SDS particles with dry radii of 25-60nm using a static parallel plate Cloud Condensation Nucleus Counter. The experimentally determined critical supersaturations agree very well with theoretical calculations taking the surface to bulk partitioning fully into account and are much higher than those calculated neglecting the partitioning.


2019 ◽  
Vol 19 (6) ◽  
pp. 3833-3855 ◽  
Author(s):  
Ghislain Motos ◽  
Julia Schmale ◽  
Joel C. Corbin ◽  
Rob. L. Modini ◽  
Nadine Karlen ◽  
...  

Abstract. Liquid clouds form by condensation of water vapour on aerosol particles in the atmosphere. Even black carbon (BC) particles, which are known to be slightly hygroscopic, have been shown to readily form cloud droplets once they have acquired water-soluble coatings by atmospheric aging processes. Accurately simulating the life cycle of BC in the atmosphere, which strongly depends on the wet removal following droplet activation, has recently been identified as a key element for accurate prediction of the climate forcing of BC. Here, to assess BC activation in detail, we performed in situ measurements during cloud events at the Jungfraujoch high-altitude station in Switzerland in summer 2010 and 2016. Cloud droplet residual and interstitial (unactivated) particles as well as the total aerosol were selectively sampled using different inlets, followed by their physical characterization using scanning mobility particle sizers (SMPSs), multi-angle absorption photometers (MAAPs) and a single-particle soot photometer (SP2). By calculating cloud droplet activated fractions with these measurements, we determined the roles of various parameters on the droplet activation of BC. The half-rise threshold diameter for droplet activation (Dhalfcloud), i.e. the size above which aerosol particles formed cloud droplets, was inferred from the aerosol size distributions measured behind the different inlets. The effective peak supersaturation (SSpeak) of a cloud was derived from Dhalfcloud by comparing it to the supersaturation dependence of the threshold diameter for cloud condensation nuclei (CCN) activation measured by a CCN counter (CCNC). In this way, we showed that the mass-based scavenged fraction of BC strongly correlates with that of the entire aerosol population because SSpeak modulates the critical size for activation of either particle type. A total of 50 % of the BC-containing particles with a BC mass equivalent core diameter of 90 nm was activated in clouds with SSpeak≈0.21 %, increasing up to ∼80 % activated fraction at SSpeak≈0.50 %. On a single-particle basis, BC activation at a certain SSpeak is controlled by the BC core size and internally mixed coating, which increases overall particle size and hygroscopicity. However, the resulting effect on the population averaged and on the size-integrated BC scavenged fraction by mass is small for two reasons: first, acquisition of coatings only matters for small cores in clouds with low SSpeak; and, second, variations in BC core size distribution and mean coating thickness are limited in the lower free troposphere in summer. Finally, we tested the ability of a simplified theoretical model, which combines the κ-Köhler theory with the Zdanovskii–Stokes–Robinson (ZSR) mixing rule under the assumptions of spherical core–shell particle geometry and surface tension of pure water, to predict the droplet activation behaviour of BC-containing particles in real clouds. Predictions of BC activation constrained with SSpeak and measured BC-containing particle size and mixing state were compared with direct cloud observations. These predictions achieved closure with the measurements for the particle size ranges accessible to our instrumentation, that is, BC core diameters and total particle diameters of approximately 50 and 180 nm, respectively. This clearly indicates that such simplified theoretical models provide a sufficient description of BC activation in clouds, as previously shown for activation occurring in fog at lower supersaturation and also shown in laboratory experiments under controlled conditions. This further justifies application of such simplified theoretical approaches in regional and global simulations of BC activation in clouds, which include aerosol modules that explicitly simulate BC-containing particle size and mixing state.


Sign in / Sign up

Export Citation Format

Share Document