scholarly journals Supplementary material to "African volcanic emissions influencing atmospheric aerosol particles over the Amazon rain forest"

Author(s):  
Jorge Saturno ◽  
Florian Ditas ◽  
Marloes Penning de Vries ◽  
Bruna A. Holanda ◽  
Mira L. Pöhlker ◽  
...  
2017 ◽  
Author(s):  
Jorge Saturno ◽  
Florian Ditas ◽  
Marloes Penning de Vries ◽  
Bruna A. Holanda ◽  
Mira L. Pöhlker ◽  
...  

Abstract. Long-range transport (LRT) plays an important role in the Amazon rain forest by bringing in different primary and secondary aerosol particles from distant sources. The atmospheric oxidation of dimethyl sulfide (DMS), emitted from marine plankton, is considered an important sulfate source over the Amazon rain forest, with a lesser contribution from terrestrial soil and vegetation sulfur emissions. Volcanic sulfur emissions from Africa could be a source of particulate sulfate to the Amazonian atmosphere upon transatlantic transport but no observations have been published. By using satellite observations, together with ground‑based and airborne aerosol particle observations, this paper provides evidence of the influence that volcanic emissions have on the aerosol properties that have been observed in central Amazonia. Under the volcanic influence, sulfate mass concentrations reached up to 3.6 µg m−3 (hourly mean) at ground level, the highest value ever reported in the Amazon region. The hygroscopicity parameter was higher than the characteristic dry-season average, reaching a maximum of 0.36 for accumulation mode aerosol particles. Airborne measurements and satellite data indicated the transport of two different volcanic plumes reaching the Amazon Basin in September 2014 with a sulfate-enhanced layer at an altitude between 4 and 5 km. These observations show that remote volcanic sources can episodically affect the aerosol cycling over the Amazon rain forest and perturb the background conditions. Further studies should address the long-term effect of volcanogenic aerosol particles over the Amazon Basin by running long-term and intensive field measurements in the Amazon region and by monitoring African emissions and their transatlantic transport.


2017 ◽  
Author(s):  
Marco Pandolfi ◽  
Lucas Alados-Arboledas ◽  
Andrés Alastuey ◽  
Marcos Andrade ◽  
Begoña Artiñano ◽  
...  

2006 ◽  
Vol 6 (12) ◽  
pp. 4519-4527 ◽  
Author(s):  
H. Wex ◽  
A. Kiselev ◽  
M. Ziese ◽  
F. Stratmann

Abstract. A calibration for LACIS (Leipzig Aerosol Cloud Interaction Simulator) for its use as a CCN (cloud condensation nuclei) detector has been developed. For this purpose, sodium chloride and ammonium sulfate particles of known sizes were generated and their grown sizes were detected at the LACIS outlet. From these signals, the effective critical super-saturation was derived as a function of the LACIS wall temperature. With this, LACIS is calibrated for its use as a CCN detector. The applicability of LACIS for measurements of the droplet activation, and also of the hygroscopic growth of atmospheric aerosol particles was tested. The activation of the urban aerosol particles used in the measurements was found to occur at a critical super-saturation of 0.46% for particles with a dry diameter of 75 nm, and at 0.42% for 85 nm, respectively. Hygroscopic growth was measured for atmospheric aerosol particles with dry diameters of 150, 300 and 350 nm at relative humidities of 98 and 99%, and it was found that the larger dry particles contained a larger soluble volume fraction of about 0.85, compared to about 0.6 for the 150 nm particles.


Sign in / Sign up

Export Citation Format

Share Document