scholarly journals Supplementary material to "Aerosol emission factors from traditional biomass cookstoves in India: Insights from field measurements"

Author(s):  
Apoorva Pandey ◽  
Sameer Patel ◽  
Shamsh Pervez ◽  
Suresh Tiwari ◽  
Gautam Yadama ◽  
...  
2017 ◽  
Author(s):  
Apoorva Pandey ◽  
Sameer Patel ◽  
Shamsh Pervez ◽  
Suresh Tiwari ◽  
Gautam Yadama ◽  
...  

Abstract. Residential solid biomass cookstoves are important sources of aerosol emissions in India. Cookstove emission rates are largely based on laboratory experiments conducted using the standard water-boiling test, but real-world emissions are often higher owing to different stove designs, fuels, and cooking methods. Constraining mass emission factors (EFs) for prevalent cookstoves is important because they serve as inputs to bottom-up emission inventories used to evaluate health and climate impacts. Real-world EFs were measured during winter, 2015, for a traditional cookstove (chulha) burning fuel-wood (FW), agricultural residue (AG) and dung (DG) from different regions of India. Average (±95 % confidence interval) EFs for FW, AG, and DG were: 1) PM2.5 mass: 6.8 (4.7–9.4) g kg−1, 7.1 (3.9–11.8) g kg−1, and 14.5 (7.5–25.3) g kg−1, respectively; 2) elemental carbon (EC): 0.6 (0.4–0.9) g kg−1, 1.0 (0.4–2.0) g kg−1, and 0.6 (0.3–1.3) g kg−1, respectively; and 3) Organic carbon (OC): 3.1 (2.0–4.6) g kg−1, 4.5 (2.3–8.0) g kg−1, and 8.2 (4.2–15.01) g kg−1, respectively. The mean (±95 % confidence interval) OC-to-EC mass ratios were 6.5 (4.5–9.1), 7.6 (4.4–12.2), and 12.7 (8.8–17.8), respectively, with OC and EC quantified by the IMPROVE_A thermal/optical reflectance protocol. These real-world EFs are higher than those from laboratory-based measurements. Combustion conditions have larger effects on EFs than the fuel-types. We also report the carbon mass fractions of our aerosol samples determined using the thermal-optical reflectance method. The mass fraction profiles are consistent between the three fuel categories, but markedly different from those reported in past literature.


2004 ◽  
Vol 18 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xunhua Zheng ◽  
Shenghui Han ◽  
Yao Huang ◽  
Yuesi Wang ◽  
Mingxing Wang

2016 ◽  
Author(s):  
Pawel K. Misztal ◽  
Jeremy C. Avise ◽  
Thomas Karl ◽  
Klaus Scott ◽  
Haflidi H. Jonsson ◽  
...  

2011 ◽  
Vol 11 (3) ◽  
pp. 931-954 ◽  
Author(s):  
Y. Lei ◽  
Q. Zhang ◽  
K. B. He ◽  
D. G. Streets

Abstract. An inventory of anthropogenic primary aerosol emissions in China was developed for 1990–2005 using a technology-based approach. Taking into account changes in the technology penetration within industry sectors and improvements in emission controls driven by stricter emission standards, a dynamic methodology was derived and implemented to estimate inter-annual emission factors. Emission factors of PM2.5 decreased by 7%–69% from 1990 to 2005 in different industry sectors of China, and emission factors of TSP decreased by 18%–80% as well, with the measures of controlling PM emissions implemented. As a result, emissions of PM2.5 and TSP in 2005 were 11.0 Tg and 29.7 Tg, respectively, less than what they would have been without the adoption of these measures. Emissions of PM2.5, PM10 and TSP presented similar trends: they increased in the first six years of 1990s and decreased until 2000, then increased again in the following years. Emissions of TSP peaked (35.5 Tg) in 1996, while the peak of PM10 (18.8 Tg) and PM2.5 (12.7 Tg) emissions occurred in 2005. Although various emission trends were identified across sectors, the cement industry and biofuel combustion in the residential sector were consistently the largest sources of PM2.5 emissions, accounting for 53%–62% of emissions over the study period. The non-metallic mineral product industry, including the cement, lime and brick industries, accounted for 54%–63% of national TSP emissions. There were no significant trends of BC and OC emissions until 2000, but the increase after 2000 brought the peaks of BC (1.51 Tg) and OC (3.19 Tg) emissions in 2005. Although significant improvements in the estimation of primary aerosols are presented here, there still exist large uncertainties. More accurate and detailed activity information and emission factors based on local tests are essential to further improve emission estimates, this especially being so for the brick and coke industries, as well as for coal-burning stoves and biofuel usage in the residential sector.


2004 ◽  
Vol 35 ◽  
pp. S853-S854
Author(s):  
R. GEHRIG ◽  
M. HILL ◽  
B. BUCHMANN ◽  
D. IMHOF ◽  
E. WEINGARTNER ◽  
...  

2021 ◽  
Author(s):  
András Hoffer ◽  
Ádám Tóth ◽  
Beatrix Jancsek-Turóczi ◽  
Attila Machon ◽  
Aida Meiramova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document