scholarly journals Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements

Author(s):  
Yuke Wang ◽  
Valery Shulga ◽  
Gennadi Milinevsky ◽  
Aleksey Patoka ◽  
Oleksandr Evtushevsky ◽  
...  

Abstract. The impact of a major sudden stratospheric warming (SSW) in the Arctic in February 2018 on the mid-latitude mesosphere was investigated by performing microwave radiometer measurements of carbon monoxide (CO) and zonal wind above Kharkiv, Ukraine (50.0° N, 36.3° E). The mesospheric peculiarities of this SSW event were observed using recently designed and installed microwave radiometer in East Europe for the first time. The data from the ERA-Interim and NCEP–NCAR reanalyses, as well as the Aura Microwave Limb Sounder measurements, have been also used. Microwave observations of the daily CO profiles in January–March 2018 allowed retrieving mesospheric zonal wind at 70–85 km (below the winter mesopause) over the Kharkiv site. The reverse of the mesospheric westerly from about 10 m s−1 to the easterly wind of about −10 m s−1 around 10 February has been registered. Local microwave observations in the NH midlatitudes combined with reanalysis data show wide ranges of daily variability in CO, zonal wind, temperature and geopotential height in the mesosphere and stratosphere during the SSW 2018. Oscillations in the vertical CO profile, zonal wind, and geopotential height during the SSW, stratopause disappearance after the SSW onset and strong CO and westerly wind peaks at the start of the SSW recovery phase have been observed. The observed CO variability can be explained by vertical and horizontal air mass redistribution due to planetary wave activity with the replacement of the CO-rich air by CO-poor air and vice versa, in agreement with other studies. The results of microwave measurements of CO and zonal wind in the midlatitude mesosphere at 70–85 km altitudes, which still is not adequately covered by ground-based observations, are useful for improving our understanding of the SSW impacts in this region.

2019 ◽  
Vol 19 (15) ◽  
pp. 10303-10317 ◽  
Author(s):  
Yuke Wang ◽  
Valerii Shulga ◽  
Gennadi Milinevsky ◽  
Aleksey Patoka ◽  
Oleksandr Evtushevsky ◽  
...  

Abstract. The impact of a major sudden stratospheric warming (SSW) in the Arctic in February 2018 on the midlatitude mesosphere is investigated by performing the microwave radiometer measurements of carbon monoxide (CO) and zonal wind above Kharkiv, Ukraine (50.0∘ N, 36.3∘ E). The mesospheric peculiarities of this SSW event were observed using a recently designed and installed microwave radiometer in eastern Europe for the first time. Data from the ERA-Interim and MERRA-2 reanalyses, as well as the Aura microwave limb sounder measurements, are also used. Microwave observations of the daily CO profiles in January–March 2018 allowed for the retrieval of mesospheric zonal wind at 70–85 km (below the winter mesopause) over the Kharkiv site. Reversal of the mesospheric westerly from about 10 m s−1 to an easterly wind of about −10 m s−1 around 10 February was observed. The local microwave observations at our Northern Hemisphere (NH) midlatitude site combined with reanalysis data show wide-ranging daily variability in CO, zonal wind, and temperature in the mesosphere and stratosphere during the SSW of 2018. The observed local CO variability can be explained mainly by horizontal air mass redistribution due to planetary wave activity. Replacement of the CO-rich polar vortex air by CO-poor air of the surrounding area led to a significant mesospheric CO decrease over the station during the SSW and fragmentation of the vortex over the station at the SSW start caused enhanced stratospheric CO at about 30 km. The results of microwave measurements of CO and zonal wind in the midlatitude mesosphere at 70–85 km altitudes, which still are not adequately covered by ground-based observations, are useful for improving our understanding of the SSW impacts in this region.


Author(s):  
Yuke Wang ◽  
Gennadi Milinevsky ◽  
Oleksandr Evtushevsky ◽  
Andrew Klekociuk ◽  
Wei Han ◽  
...  

The planetary wave activity in the stratosphere–mesosphere during the Arctic major Sudden Stratospheric Warming (SSW) in February 2018 is discussed on the basis of the microwave radiometer (MWR) measurements of carbon monoxide (CO) above Kharkiv, Ukraine (50.0° N, 36.3° E) and the Aura Microwave Limb Sounder (MLS) measurements of CO, temperature and geopotential heights. From the MLS data, eastward and westward migrations of wave 1/wave 2 spectral components were differentiated, to which less attention was paid in previous studies. Abrupt changes in zonal wave spectra occur with the zonal wind reversal near 10 February 2018. Eastward wave 1 and wave 2, observed before the SSW onset, disappear during the SSW event, when westward wave 1 becomes dominant. Wavelet power spectra of mesospheric CO variations show statistically significant periods in a band of 20–30 days using both MWR and MLS data. Approximately 10-day periods appear only after the SSW onset. Since the propagation of upward planetary waves is limited in the easterly zonal flow in the stratosphere after the zonal wind reversal during SSW, forced planetary waves in the mid-latitude mesosphere may exist due to the instability of the zonal flow.


2020 ◽  
Vol 12 (23) ◽  
pp. 3950
Author(s):  
Yu Shi ◽  
Valerii Shulga ◽  
Oksana Ivaniha ◽  
Yuke Wang ◽  
Oleksandr Evtushevsky ◽  
...  

In this paper, a comparison of the impact of major sudden stratospheric warmings (SSWs) in the Arctic in February 2018 (SSW1) and January 2019 (SSW2) on the mid-latitude mesosphere is given. The mesospheric carbon monoxide (CO) and zonal wind in these two major SSW events were observed at altitudes of 70–85 km using a microwave radiometer (MWR) at Kharkiv, Ukraine (50.0°N, 36.3°E). Data from ERA-Interim and MERRA-2 reanalyses and Aura Microwave Limb Sounder measurements were also used. It is shown that: (i) The differences between SSW1 and SSW2, in terms of local variability in zonal wind, temperature, and CO in the stratosphere and mesosphere, were clearly defined by the polar vortex (westerly in cyclonic circulation) and mid-latitude anticyclone (easterly) migrating over the MWR station, therefore; (ii) mesospheric intrusions of CO-rich air into the stratosphere over the Kharkiv region occurred only occasionally, (iii) the larger zonal wave 1–3 amplitudes before SSW1 were followed by weaker polar vortex recovery than that after SSW2, (iv) the strong vortex recovery after SSW2 was supported by earlier event timing (midwinter) favoring vortex cooling due to low solar irradiance and enhanced zonal circulation, and (v) vortex strengthening after SSW2 was accompanied by wave 1–3 amplification in March 2019, which was absent after SSW1. Finally, the influence of the large-scale circulation structures formed in individual major SSW events on the locally recorded characteristics of the atmosphere is discussed.


2010 ◽  
Vol 25 (6) ◽  
pp. 1628-1644 ◽  
Author(s):  
Young-Joon Kim ◽  
Maria Flatau

Abstract A very strong Arctic major sudden stratospheric warming (SSW) event occurred in late January 2009. The stratospheric temperature climbed abruptly and the zonal winds reversed direction, completely splitting the polar stratospheric vortex. A hindcast of this event is attempted by using the Navy Operational Global Atmospheric Prediction System (NOGAPS), which includes the full stratosphere with its top at around 65 km. As Part I of this study, extended-range (3 week) forecast experiments are performed using NOGAPS without the aid of data assimilation. A unified parameterization of orographic drag is designed by combining two parameterization schemes; one by Webster et al., and the other by Kim and Arakawa and Kim and Doyle. With the new unified orographic drag scheme implemented, NOGAPS is able to reproduce the salient features of this Arctic SSW event owing to enhanced planetary wave activity induced by more comprehensive subgrid-scale orographic drag processes. The impact of the SSW on the tropospheric circulation is also investigated in view of the Arctic Oscillation (AO) index, which calculated using 1000-hPa geopotential height. The NOGAPS with upgraded orographic drag physics better simulates the trend of the AO index as verified by the Met Office analysis, demonstrating its improved stratosphere–troposphere coupling. It is argued that the new model is more suitable for forecasting SSW events in the future and can serve as a tool for studying various stratospheric phenomena.


2021 ◽  
Vol 13 (6) ◽  
pp. 1190
Author(s):  
Yuke Wang ◽  
Gennadi Milinevsky ◽  
Oleksandr Evtushevsky ◽  
Andrew Klekociuk ◽  
Wei Han ◽  
...  

The planetary wave activity in the stratosphere–mesosphere during the Arctic major Sudden Stratospheric Warming (SSW) in February 2018 is discussed on the basis of microwave radiometer (MWR) measurements of carbon monoxide (CO) above Kharkiv, Ukraine (50.0° N, 36.3° E) and the Aura Microwave Limb Sounder (MLS) measurements of CO, temperature and geopotential heights. From the MLS data, eastward and westward migrations of wave 1/wave 2 spectral components were differentiated, to which less attention was paid in previous studies. Abrupt changes in zonal wave spectra occurred with the zonal wind reversal near 10 February 2018. Eastward wave 1 and wave 2 were observed before the SSW onset and disappeared during the SSW event, when westward wave 1 became dominant. Wavelet power spectra of mesospheric CO variations showed statistically significant periods of 20–30 days using both MWR and MLS data. Although westward wave 1 in the mesosphere dominated with the onset of the SSW 2018, it developed independently of stratospheric dynamics. Since the propagation of upward planetary waves was limited in the easterly zonal flow in the stratosphere during SSW, forced planetary waves in the mid-latitude mesosphere may exist due to the instability of the zonal flow.


2021 ◽  
Author(s):  
Shima Bahramvash Shams ◽  
Von P. Walden ◽  
James W. Hannigan ◽  
William J. Randel ◽  
Irina V. Petropavlovskikh ◽  
...  

Abstract. Stratospheric circulation is a critical part of the Arctic ozone cycle. Sudden stratospheric warming events (SSWs) manifest the strongest alteration of stratospheric dynamics. Changes in planetary wave propagation vigorously influence zonal mean zonal wind, temperature, and tracer concentrations in the stratosphere over the high latitudes. In this study, we examine six major SSWs from 2004 to 2020 using the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). Using the unique density of observations around the Greenland sector at high latitudes, we perform comprehensive comparisons of high latitude observations with the MERRA-2 ozone dataset during the six major SSWs. Our results show that MERRA-2 captures the high variability of mid stratospheric ozone fluctuations during SSWs over high latitudes. However, larger uncertainties are observed in the lower stratosphere and troposphere. The zonally averaged stratospheric ozone shows a dramatic increase of 9–29 % in total column ozone (TCO) near the time of each SSW, which lasts up to two months. The SSWs exhibit a more significant impact on ozone over high northern latitudes when the polar vortex is mostly elongated as seen in 2009 and 2018 compared to the events in which the polar vortex is displaced towards Europe. The regional impact of SSWs over Greenland has a similar structure as the zonal average, however, exhibits more intense ozone anomalies which is reflected by 15–37 % increase in TCO. The influence of SSW on mid stratospheric ozone levels persists longer than their impact on temperature. This paper is focused on the increased (suppressed) wave activity before (after) the SSWs and their impact on ozone variability at high latitudes. This includes an investigation of the different terms of tracer continuity using MERRA-2 parameters, which emphasizes the key role of vertical advection on mid-stratospheric ozone during the SSWs.


2018 ◽  
Author(s):  
Tarique A. Siddiqui ◽  
Astrid Maute ◽  
Nick Pedatella ◽  
Yosuke Yamazaki ◽  
Hermann Lühr ◽  
...  

Abstract. The variabilities of the semidiurnal solar and lunar tide of the equatorial electrojet (EEJ) are investigated during the 2003, 2006, 2009 and 2013 major sudden stratospheric warming (SSW) events in this study. For this purpose, the ground-magnetometer recordings at the equatorial observatories in Huancayo and Fuquene are utilized. Results show a major enhancement in the amplitude of the EEJ semidiurnal lunar tide in each of the four warming events. The EEJ semidiurnal solar tidal amplitude shows an amplification prior to the onset of warmings, a reduction during the deceleration of the zonal mean zonal wind at 60° N and 10 hPa and a second enhancement a few days after the peak reversal of the zonal mean zonal wind during all the four SSWs. Results also reveal that the amplitude of the EEJ semidiurnal lunar tide becomes comparable or even greater than the amplitude of the EEJ semidiurnal solar tide during all these warming events. The present study also compares the EEJ semidiurnal solar and lunar tidal changes with numerical simulations of the variability of the migrating semidiurnal solar (SW2) and lunar (M2) tide in neutral temperature at ~ 120 km altitude. A better agreement between the enhancements of the EEJ semidiurnal lunar tide and the M2 tide in neutral temperature is observed in comparison with the enhancements of the EEJ semidiurnal solar tide and the SW2 tide in neutral temperature.


2018 ◽  
Vol 31 (6) ◽  
pp. 2399-2415 ◽  
Author(s):  
Wanying Kang ◽  
Eli Tziperman

Sudden stratospheric warming (SSW) events influence the Arctic Oscillation and midlatitude extreme weather. Previous work showed the Arctic stratosphere to be influenced by the Madden–Julian oscillation (MJO) and that the SSW frequency increases with an increase of the MJO amplitude, expected in a warmer climate. It is shown here that the zonal asymmetry in both the background state and forcing plays a dominant role, leading to either enhancement or suppression of SSW events by MJO-like forcing. When applying a circumglobal MJO-like forcing in a dry dynamic core model, the MJO-forced waves can change the general circulation in three ways that affect the total vertical Eliassen–Palm flux in the Arctic stratosphere. First, weakening the zonal asymmetry of the tropospheric midlatitude jet, and therefore preventing the MJO-forced waves from propagating past the jet. Second, weakening the jet amplitude, reducing the waves generated in the midlatitudes, especially stationary waves, and therefore the upward-propagating planetary waves. Third, reducing the Arctic lower-stratospheric refractory index, which prevents waves from upward propagation. These effects stabilize the Arctic vortex and lower the SSW frequency. The longitudinal range to which the MJO-like forcing is limited plays an important role as well, and the strongest SSW frequency increase is seen when the MJO is located where it is observed in current climate. The SSW suppression effects are active when the MJO-like forcing is placed at different longitudinal locations. This study suggests that future trends in both the MJO amplitude and its longitudinal extent are important for predicting the Arctic stratosphere response.


Sign in / Sign up

Export Citation Format

Share Document