scholarly journals Using CALIOP to constrain blowing snow emissions of sea salt aerosols over Arctic and Antarctic sea ice

2018 ◽  
Author(s):  
Jiayue Huang ◽  
Lyatt Jaeglé ◽  
Viral Shah

Abstract. Sea salt aerosols (SSA) produced on sea ice surfaces by blowing snow events or lifting of frost flower crystals have been suggested as important sources of SSA during winter over polar regions. The magnitude and relative contribution of blowing snow and frost flower SSA sources, however, remain uncertain. In this study, we use 2007–2009 aerosol extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the GEOS-Chem global chemical transport model to constrain sources of SSA over Arctic and Antarctic sea ice. CALIOP retrievals show elevated levels of aerosol extinctions (10–20 Mm−1) in the lower troposphere (0–2 km) over polar regions during cold months. The standard GEOS-Chem model underestimates the CALIOP aerosol extinctions by 50–70 %. Adding frost flower emissions of SSA fails to explain the CALIOP observations. With blowing snow SSA emissions, the model captures the overall spatial and seasonal variation of CALIOP aerosol extinctions over the polar regions, but overestimates springtime aerosol extinctions over Arctic sea ice and winter-spring extinctions over Antarctic sea ice. We reduce the surface snow salinity over multi-year sea ice and infer the monthly FYI snow salinity required to minimize the discrepancy between CALIOP extinctions and the GEOS-Chem simulation. The empirically-derived snow salinity shows a decreasing trend in between fall and spring. The optimized blowing snow model with inferred snow salinities generally agrees with CALIOP extinction observations to within 10 % over sea ice, but underestimates aerosol extinctions over the regions where frost flowers are expected to have a large influence. Frost flowers could thus contribute indirectly to SSA production by increasing the local surface snow salinity and, therefore, the SSA production from blowing snow. We carry out a case study of an Arctic blowing snow SSA feature predicted by GEOS-Chem and sampled by CALIOP. Using backtrajectories, we link this feature to a blowing snow event which occurred 2 days earlier over first-year sea ice and was also detected by CALIOP.

2018 ◽  
Vol 18 (22) ◽  
pp. 16253-16269 ◽  
Author(s):  
Jiayue Huang ◽  
Lyatt Jaeglé ◽  
Viral Shah

Abstract. Sea salt aerosols (SSA) produced on sea ice surfaces by blowing snow events or the lifting of frost flower crystals have been suggested as important sources of SSA during winter over polar regions. The magnitude and relative contribution of blowing snow and frost flower SSA sources, however, remain uncertain. In this study, we use 2007–2009 aerosol extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite and the GEOS-Chem global chemical transport model to constrain sources of SSA over Arctic and Antarctic sea ice. CALIOP retrievals show elevated levels of aerosol extinction coefficients (10–20 Mm−1) in the lower troposphere (0–2 km) over polar regions during cold months. The standard GEOS-Chem model underestimates the CALIOP extinction coefficients by 50 %–70 %. Adding frost flower emissions of SSA fails to explain the CALIOP observations. With blowing snow SSA emissions, the model captures the overall spatial and seasonal variation of CALIOP aerosol extinction coefficients over the polar regions but underestimates aerosol extinction over Arctic sea ice in fall to early winter and overestimates winter-to-spring extinction over Antarctic sea ice. We infer the monthly surface snow salinity on first-year sea ice required to minimize the discrepancy between CALIOP extinction coefficients and the GEOS-Chem simulation. The empirically derived snow salinity shows a decreasing trend between fall and spring. The optimized blowing snow model with inferred snow salinities generally agrees with CALIOP extinction coefficients to within 10 % over sea ice but underestimates them over the regions where frost flowers are expected to have a large influence. Frost flowers could thus contribute indirectly to SSA production by increasing the local surface snow salinity and, therefore, the SSA production from blowing snow. We carry out a case study of an Arctic blowing snow SSA feature predicted by GEOS-Chem and sampled by CALIOP. Using back trajectories, we link this feature to a blowing snow event that occurred 2 days earlier over first-year sea ice and was also detected by CALIOP.


2017 ◽  
Vol 17 (13) ◽  
pp. 8577-8598 ◽  
Author(s):  
Keiichiro Hara ◽  
Sumito Matoba ◽  
Motohiro Hirabayashi ◽  
Tetsuhide Yamasaki

Abstract. Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl−, Mg2+, K+, Ca2+, Br−, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14–3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl−, Br−, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42−. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.


2017 ◽  
Vol 17 (5) ◽  
pp. 3699-3712 ◽  
Author(s):  
Jiayue Huang ◽  
Lyatt Jaeglé

Abstract. Sea salt aerosols (SSA) are generated via air bubbles bursting at the ocean surface as well as by wind mobilization of saline snow and frost flowers over sea-ice-covered areas. The relative magnitude of these sources remains poorly constrained over polar regions, affecting our ability to predict their impact on halogen chemistry, cloud formation, and climate. We implement a blowing snow and a frost flower emission scheme in the GEOS-Chem global chemical transport model, which we validate against multiyear (2001–2008) in situ observations of SSA mass concentrations at three sites in the Arctic, two sites in coastal Antarctica, and from the 2008 ICEALOT cruise in the Arctic. A simulation including only open ocean emissions underestimates SSA mass concentrations by factors of 2–10 during winter–spring for all ground-based and ship-based observations. When blowing snow emissions are added, the model is able to reproduce observed wintertime SSA concentrations, with the model bias decreasing from a range of −80 to −34 % for the open ocean simulation to −2 to +9 % for the simulation with blowing snow emissions. We find that the frost flower parameterization cannot fully explain the high wintertime concentrations and displays a seasonal cycle decreasing too rapidly in early spring. Furthermore, the high day-to-day variability of observed SSA is better reproduced by the blowing snow parameterization. Over the Arctic (> 60° N) (Antarctic, > 60° S), we calculate that submicron SSA emissions from blowing snow account for 1.0 Tg yr−1 (2.5 Tg yr−1), while frost flower emissions lead to 0.21 Tg yr−1 (0.25 Tg yr−1) compared to 0.78 Tg yr−1 (1.0 Tg yr−1) from the open ocean. Blowing snow emissions are largest in regions where persistent strong winds occur over sea ice (east of Greenland, over the central Arctic, Beaufort Sea, and the Ross and Weddell seas). In contrast, frost flower emissions are largest where cold air temperatures and open leads are co-located (over the Canadian Arctic Archipelago, coastal regions of Siberia, and off the Ross and Ronne ice shelves). Overall, in situ observations of mass concentrations of SSA suggest that blowing snow is likely to be the dominant SSA source during winter, with frost flowers playing a much smaller role.


2004 ◽  
Vol 4 (4) ◽  
pp. 4737-4776 ◽  
Author(s):  
F. Domine ◽  
R. Sparapani ◽  
A. Ianniello ◽  
H. J. Beine

Abstract. Snow, through its trace constituents, can have a major impact on lower tropospheric chemistry, as evidenced by ozone depletion events (ODEs) in oceanic polar areas. These ODEs are caused by the chemistry of bromine compounds, that originate from sea salt bromide. According to current ideas, bromide may be supplied to the snow surface either by upward migration from sea ice or by frost flowers being wind-blown to the snow surface. We investigate here the relative importance of both these processes by analyzing mineral ions in snow samples collected near Alert and Ny-Ålesund (Canadian and European high Arctic) in winter and spring. Vertical ionic profiles in the snowpack on sea ice are measured to test upward migration of sea salt ions and to seek evidence for ion fractionation processes. Time series of the ionic composition of surface snow layers are investigated to quantify wind-transported ions. Upward migration of unfractionated sea salt, to heights of at least 17 cm, was observed in snow sampled in winter, at temperatures near −30°C, leading to Cl− concentration of several hundred µM. Upward migration thus has the potential to supply ions to surface snow layers. Time series show that wind can deposit aerosols to the top few cm of the snow, leading also to Cl− concentrations of several hundred µM, so that both migration from sea ice and wind transport can significantly contribute ions to snow. At Ny-Ålesund, sea salt transported by wind was unfractionated, implying that it does not come from frost flowers. In the Arctic, frost flowers thus do not appear necessary to lead to large sea salt concentrations in surface snow, and to supply the bromide needed for ODEs. The data obtained also indicate that ODEs lead to significant deposition of Br− to snow. We speculate that this can also take place in coastal regions and contribute to propagate ODEs inland. Finally, we stress the need to measure snow physical parameters such as permeability and specific surface area, to understand quantitatively changes in snow chemistry.


2016 ◽  
Author(s):  
Jiayue Huang ◽  
Lyatt Jaeglé

Abstract. Sea salt aerosols (SSA) are generated via air bubbles bursting at the ocean surface, as well as by wind mobilization of saline snow and frost flowers over sea-ice covered areas. The relative magnitude of these sources remains poorly constrained over polar regions, affecting our ability to predict their impact on halogen chemistry, cloud formation and climate. We implement a blowing snow and a frost flower emission scheme in the GEOS-Chem global chemical transport model, which we validate against multi-year (2001–2008) in situ observations of SSA mass concentrations at three sites in the Arctic, two sites in coastal Antarctica, as well as during a cruise in the Arctic (ICEALOT, 2008). A simulation including only open ocean emissions underestimates SSA mass concentrations by factors of 2–10 during winter-spring for all ground-based and ship-based observations. When blowing snow emissions are added, the model is able to reproduce observed wintertime SSA concentrations, with the model bias decreasing from a range of −80 % to −34 % for the open ocean simulation to −2 % to +9 % for the simulation with blowing snow emissions. We find that the frost flower parameterization cannot fully explain the high wintertime concentrations and displays a seasonal cycle decreasing too rapidly in early spring. Furthermore, the high day-to-day variability of observed SSA is better reproduced by the blowing snow parameterization. Over the Arctic (Antarctic), we calculate that submicron SSA emissions from blowing snow account for 1.0 (2.5) Tg yr−1, while frost flower emissions lead to 0.25 (0.14) Tg yr−1 compared to 0.78 (1.0) Tg yr−1 from the open ocean. Blowing snow emissions are largest in regions where persistent strong winds occur over sea ice (East of Greenland, over the central Arctic, Beaufort Sea, as well as the Ross and Weddell Seas). In contrast, frost flower emissions are largest where cold air temperatures, open leads and mild winds are co-located (over the Canadian Arctic Archipelago, coastal regions of Siberia, and off the Ross and Ronne ice shelves). Overall, in situ observations of mass concentrations of SSA suggest that blowing snow is likely to be the dominant SSA source during winter, with frost flowers playing a much smaller role.


2004 ◽  
Vol 4 (9/10) ◽  
pp. 2259-2271 ◽  
Author(s):  
F. Domine ◽  
R. Sparapani ◽  
A. Ianniello ◽  
H. J. Beine

Abstract. Snow, through its trace constituents, can have a major impact on lower tropospheric chemistry, as evidenced by ozone depletion events (ODEs) in oceanic polar areas. These ODEs are caused by the chemistry of bromine compounds that originate from sea salt bromide. Bromide may be supplied to the snow surface by upward migration from sea ice, by frost flowers being wind-blown to the snow surface, or by wind-transported aerosol generated by sea spray. We investigate here the relative importance of these processes by analyzing ions in snow near Alert and Ny-Ålesund (Canadian and European high Arctic) in winter and spring. Vertical ionic profiles in the snowpack on sea ice are measured to test upward migration of sea salt ions and to seek evidence for ion fractionation processes. Time series of the ionic composition of surface snow layers are investigated to quantify wind-transported ions. Upward migration of unfractionated sea salt to heights of at least 17cm was observed in winter snow, leading to Cl- concentration of several hundred µM. Upward migration thus has the potential to supply ions to surface snow layers. Time series show that wind can deposit aerosols to the top few cm of the snow, leading also to Cl- concentrations of several hundred µM, so that both diffusion from sea ice and wind transport can significantly contribute ions to snow. At Ny-Ålesund, sea salt transported by wind was unfractionated, implying that it comes from sea spray rather than frost flowers. Estimations based on our results suggest that the marine snowpack contains about 10 times more Na+ than the frost flowers, so that both the marine snowpack and frost flowers need to be considered as sea salt sources. Our data suggest that ozone depletion chemistry can significantly enhance the Br- content of snow. We speculate that this can also take place in coastal regions and contribute to propagate ODEs inland. Finally, we stress the need to measure snow physical parameters such as permeability and specific surface area to understand quantitatively changes in snow chemistry.


Elem Sci Anth ◽  
2020 ◽  
Vol 8 ◽  
Author(s):  
Hannah M. Dawson ◽  
Katherine R. Heal ◽  
Angela K. Boysen ◽  
Laura T. Carlson ◽  
Anitra E. Ingalls ◽  
...  

Sea-ice algae are an important source of primary production in polar regions, yet we have limited understanding of their responses to the seasonal cycling of temperature and salinity. Using a targeted liquid chromatography-mass spectrometry-based metabolomics approach, we found that axenic cultures of the Antarctic sea-ice diatom, Nitzschia lecointei, displayed large differences in their metabolomes when grown in a matrix of conditions that included temperatures of –1 and 4°C, and salinities of 32 and 41, despite relatively small changes in growth rate. Temperature exerted a greater effect than salinity on cellular metabolite pool sizes, though the N- or S-containing compatible solutes, 2, 3-dihydroxypropane-1-sulfonate (DHPS), glycine betaine (GBT), dimethylsulfoniopropionate (DMSP), and proline responded strongly to both temperature and salinity, suggesting complexity in their control. We saw the largest (> 4-fold) response to salinity for proline. DHPS, a rarely studied but potential compatible solute, had the highest intracellular concentrations among all compatible solutes of ~85 mM. When comparing the culture findings to natural Arctic sea-ice diatom communities, we found extensive overlap in metabolite profiles, highlighting the relevance of culture-based studies to probe environmental questions. Large changes in sea-ice diatom metabolomes and compatible solutes over a seasonal cycle could be significant components of biogeochemical cycling within sea ice.


2016 ◽  
Vol 97 (11) ◽  
pp. 2163-2176 ◽  
Author(s):  
Abhay Devasthale ◽  
Joseph Sedlar ◽  
Brian H. Kahn ◽  
Michael Tjernström ◽  
Eric J. Fetzer ◽  
...  

Abstract Arctic sea ice is declining rapidly and its annual ice extent minima reached record lows twice during the last decade. Large environmental and socioeconomic implications related to sea ice reduction in a warming world necessitate realistic simulations of the Arctic climate system, not least to formulate relevant environmental policies on an international scale. However, despite considerable progress in the last few decades, future climate projections from numerical models still exhibit the largest uncertainties over the polar regions. The lack of sufficient observations of essential climate variables is partly to blame for the poor representation of key atmospheric processes, and their coupling to the surface, in climate models. Observations from the hyperspectral Atmospheric Infrared Sounder (AIRS) instrument on board the National Aeronautics and Space Administration (NASA)’s Aqua satellite are contributing toward improved understanding of the vertical structure of the atmosphere over the poles since 2002, including the lower troposphere. This part of the atmosphere is especially important in the Arctic, as it directly impacts sea ice and its short-term variability. Although in situ measurements provide invaluable ground truth, they are spatially and temporally inhomogeneous and sporadic over the Arctic. A growing number of studies are exploiting AIRS data to investigate the thermodynamic structure of the Arctic atmosphere, with applications ranging from understanding processes to deriving climatologies—all of which are also useful to test and improve parameterizations in climate models. As the AIRS data record now extends more than a decade, a select few of many such noteworthy applications of AIRS data over this challenging and rapidly changing landscape are highlighted here.


Sign in / Sign up

Export Citation Format

Share Document