scholarly journals Supplementary material to "On the role of the south Pacific subtropical high at the onset of El Niño events"

Author(s):  
Youjia Zou ◽  
Xiangying Xi
2020 ◽  
Vol 33 (19) ◽  
pp. 8301-8313
Author(s):  
Qingye Min ◽  
Renhe Zhang

AbstractDespite the fact that great efforts have been made to improve the prediction of El Niño events, it remains challenging because of limited understanding of El Niño and its precursors. This research focuses on the influence of South Pacific atmospheric variability on the development of the sea surface temperature anomaly (SSTA) in the tropical Pacific. It is found that as early as in the boreal spring of El Niño years, the sea level pressure anomaly (SLPA) shows a configuration characterized by two significant negative anomaly centers in the north and a positive anomaly center in the south between the subtropics and high latitudes in South Pacific. Such an anomalous SLPA pattern becomes stronger in the following late boreal spring and summer associated with the strengthening of westerly anomalies in the tropical Pacific, weakening the southeasterly trade winds and promoting the warming of tropical eastern Pacific, which is conducive to the development of El Niño events. It is demonstrated that the SLPA pattern in boreal spring revealed in this study is closely associated with boreal summer South Pacific Oscillation (SPO) and South Pacific meridional mode (SPMM). As a precursor in boreal spring, the prediction skill of the South Pacific SLPA in boreal spring for the SSTA in the eastern equatorial Pacific is better than that of the SPMM. This study is helpful to deepen our understanding of the contribution of South Pacific extratropical atmospheric variability to El Niño occurrence.


2018 ◽  
Author(s):  
Youjia Zou ◽  
Xiangying Xi

Abstract. Previous studies have suggested that an eastward propagation of the warm pool in the western Pacific during El Niño events may be induced by a weakening of the easterly Trade Winds (Alexander et al., 2002; Bjerknes, 1969). However, the dynamic mechanism of the Trade Winds weakening is not well understood. Here we use a model and other published proxy records to demonstrate that the anomalous southward shift of the south Pacific subtropical high (SPSH) may play a crucial role at the onset of El Niño events. By analyzing the relationship between the Trade Winds, the Equatorial Currents, the Eastern Boundary Currents and the SPSH, we find that an anomalous southward shift of the SPSH can result in a weakening of the SE Trade Winds and a southward intrusion of the NE Trade Winds, leading to a southward migration of the Trade Wind-induced Equatorial Currents, including the Equatorial Countercurrent (from ~5°–8° N to ~0°). The warm pool in the western equatorial Pacific is therefore forced to propagate eastward by the enhanced Equatorial Countercurrent and, thus, a warm phase in the central or the eastern equatorial Pacific. Moreover, the equatorward upwelling in the eastern South Pacific, usually recurving along the equator, shifts southward along with the SPSH, in turn diverts towards the west at ~15° S to feed the westward South Equatorial Currents, resulting in a failure of cooling sea surface in the eastern tropical Pacific, thus a flattening of the thermocline. The model experiments indicate that the meridional position and intensity of the Equatorial Countercurrent in the Pacific are some of the determining factors in giving rise to El Niño diversity, suggesting that there should be more frequent warm events due to a meridional expansion of the warm pool under global warming.


2018 ◽  
Author(s):  
Violaine Piton ◽  
Thierry Delcroix

Abstract. We present a short overview of the long-term mean and variability of five Essential Climate Variables observed in the South China Sea over the last 3 decades, including sea surface temperature (SST), sea level anomaly (SLA), precipitation (P), surface wind and water discharge (WD) from the Mekong and Red Rivers. At the seasonal time scale, SST and SLAs increase in the summer (up to 4.2 °C and 14 cm, respectively), and P increases in the north. The summer zonal and meridional winds reverse and intensify (mostly over the ocean), and the WD shows positive anomalies. At the interannual time scale, each variable appears to be correlated with El Niño Southern Oscillation (ENSO) indices. Eastern Pacific El Niño events produce basin-wide SST warming (up to 1.4 °C) with a 6-month lag. The SLAs fall basin-wide (by up to 9 cm) during an El Niño event (all types), with a 3-month lag. The zonal and meridional winds strengthen (up to 4 m/s) in the north (weaken in the south) during all types of El Niño events, with a 3–5-month lag. A rainfall deficit of approximately 30 % of the mean occurs during all types of El Niño phases. The Mekong River WD is reduced by 1/3 of the mean 7–8 months after all types of El Niño events. We also show increasing trends of SST as high as 0.24 °C/decade and SLAs by 41 mm/decade. Increasing trends are observed for zonal wind, which is possibly linked to the phase of the Pacific Decadal Oscillation, and decreasing trends are observed for P in the north and both WD stations that were analyzed. The likely driving mechanisms and some of the relationships between all observed anomalies are discussed


Coral Reefs ◽  
2018 ◽  
Vol 37 (1) ◽  
pp. 295-308 ◽  
Author(s):  
Xijie Wang ◽  
Wenfeng Deng ◽  
Xi Liu ◽  
Gangjian Wei ◽  
Xuefei Chen ◽  
...  

Author(s):  
Eric Hackert ◽  
Joaquim Ballabrera-Poy ◽  
Antonio J. Busalacchi ◽  
Rong-Hua Zhang ◽  
Ragu Murtugudde

Sign in / Sign up

Export Citation Format

Share Document