scholarly journals Over a ten-year record of aerosol optical properties at SMEAR II

2018 ◽  
Author(s):  
Krista Luoma ◽  
Aki Virkkula ◽  
Pasi Aalto ◽  
Tuukka Petäjä ◽  
Markku Kulmala

Abstract. The aerosol optical properties (AOPs) of particles smaller than 10 μm (PM10) and 1 μm (PM1) have been measured at SMEAR II since 2006 and 2010, respectively. For the PM10 particles the mean values of the scattering and absorption coefficients, single-scattering albedo, and backscatter fraction at δ = 550 nm, and scattering and absorption Ångström exponents at the wavelength ranges 450–700 nm and 370–950 nm were 15.2 Mm−1, 2.1 Mm−1, 0.86, 0.15, 1.80 and 0.94 respectively. The time series were used to examine the trends and variation in the AOPs. Statistically significant trends were found for example for the PM10 scattering and absorption coefficients, single-scattering albedo, and backscatter fraction, and the slopes of these trends were −0.342 Mm−1, −0.0952 Mm−1, 3.4 ‧ 10−3, and 1.3 ‧ 10−3 per year. The tendency for the extensive AOPs to decrease correlated well with the decrease in aerosol number and volume concentration. The tendency for the singlescattering albedo and backscattering fraction to increase affected to the effective aerosol forcing efficiency, indicating that the dry aerosols were scattering the radiation more effectively back into space. In addition to these trends, we also observed seasonal and diurnal variations and variations between the AOPs of the PM1 and PM10 particles.

2012 ◽  
Vol 12 (12) ◽  
pp. 5647-5659 ◽  
Author(s):  
A. Leskinen ◽  
A. Arola ◽  
M. Komppula ◽  
H. Portin ◽  
P. Tiitta ◽  
...  

Abstract. We introduce a four-year (in 2006–2010) continuous data set of aerosol optical properties at Puijo in Kuopio, Finland. We study the annual and diurnal variation of the aerosol scattering and absorption coefficients, hemispheric backscattering fraction, scattering Ångström exponent, and single scattering albedo, whose median values over this period were 7.2 Mm−1 (at 550 nm), 1.0 Mm−1 (at 637 nm), 0.15, 1.93 (between 450 and 550 nm), and 0.85, respectively. The scattering coefficient peaked in the spring and autumn, being 2–4 times those in the summer and winter. An exception was the summer of 2010, when the scattering coefficient was elevated to ~300 Mm−1 by plumes from forest fires in Russia. The absorption coefficient peaked in the winter when soot-containing particles derived from biomass burning were present. The higher relative absorption coefficients resulted in lower single scattering albedo in winter. The optical properties varied also with wind direction and time of the day, indicating the effect of the local pollutant sources and the age of the particles. Peak values in the single scattering albedo were observed when the wind blew from a paper mill and from the sector without local pollutant sources. These observations were linked, respectively, to the sulphate-rich aerosol from the paper mill and the oxygenated organics in the aged aerosol, which both are known to increase the scattering characteristics of aerosols. Decreases in the single scattering albedo in the morning and afternoon, distinct in the summertime, were linked to the increased traffic density at these hours. The scattering and absorption coefficients of residential and long-range transported aerosol (two separate cloud events) were found to be decreased by clouds. The effect was stronger for the scattering than absorption, indicating preferential activation of the more hygroscopic aerosol with higher scattering characteristics.


2009 ◽  
Vol 9 (1) ◽  
pp. 5009-5054
Author(s):  
J. C. Barnard ◽  
J. D. Fast ◽  
G. Paredes-Miranda ◽  
W. P. Arnott

Abstract. Data from the MILAGRO field campaign, which took place in the Mexico City Metropolitan Area (MCMA) during March 2006, is used to perform a closure experiment between aerosol chemical properties and aerosol optical properties. Measured aerosol chemical properties, obtained from the MILAGRO T1 site, are fed to two different "chemical to optical properties" modules. One module uses a sectional approach and is identical to that used in the WRF-Chem model, while the other is based on a modal approach. This modal code is employed as an independent check on the WRF-Chem module. Both modules compute aerosol optical properties and, in particular, the single-scattering albedo, ϖ0, as a function of time. The single-scattering albedos are compared to independent measurements obtained from a photoacoustic spectrometer (PAS). Because chemical measurements of the aerosol coarse mode were not available, and the inlet of the PAS could not ingest aerosols larger than about 2 to 3 μm, we focus here on the fine-mode ϖ0. At 870 nm, the wavelength of the PAS measurements, the agreement between the computed (modal and WRF-Chem) and observed fine-mode ϖ0, averaged over the course of the campaign, is reasonably good. The observed ϖ0 value is 0.77, while for both modules, the calculated value was 0.75 resulting in a difference of 0.02 between observations and both computational approaches. This difference is less than the uncertainty of the observed ϖ0 values (6%, or 0.05), and therefore "closure" is achieved, at least for mean values. After adjusting some properties of black carbon absorption and mass concentration within plausible uncertainty limits, the two modules simulate well the diurnal variation of ϖ0, and the absorption coefficient, Babs, but are less successful in calculating the variation of the scattering coefficient, Bscat. This difficulty is probably caused by the presence of larger particles during the day when windblown dust is ubiquitous; this dust likely increases the proportion of large particles introduced into the PAS. The dust also contributes to a very large aerosol mass loading in the coarse mode, and neglect of the coarse mode may cause significant errors, estimated to be as large as 0.07, in the calculation and measurement of ambient ϖ0. Finally, the observed ϖ0 is compared to the ϖ0 computed by the full WRF-Chem model, which includes prognostic aerosol chemistry. Unlike the results discussed above, a comparison between observed and simulated ϖ0 values reveals major differences. This large discrepancy is probably due, in part, to poor characterization of emissions near the T1 site, particularly black carbon emissions.


2019 ◽  
Vol 19 (17) ◽  
pp. 11363-11382 ◽  
Author(s):  
Krista Luoma ◽  
Aki Virkkula ◽  
Pasi Aalto ◽  
Tuukka Petäjä ◽  
Markku Kulmala

Abstract. Aerosol optical properties (AOPs) describe the ability of aerosols to scatter and absorb radiation at different wavelengths. Since aerosol particles interact with the sun's radiation, they impact the climate. Our study focuses on the long-term trends and seasonal variations of different AOPs measured at a rural boreal forest site in northern Europe. To explain the observed variations in the AOPs, we also analyzed changes in the aerosol size distribution. AOPs of particles smaller than 10 µm (PM10) and 1 µm (PM1) have been measured at SMEAR II, in southern Finland, since 2006 and 2010, respectively. For PM10 particles, the median values of the scattering and absorption coefficients, single-scattering albedo, and backscatter fraction at λ=550 nm were 9.8 Mm−1, 1.3 Mm−1, 0.88, and 0.14. The median values of scattering and absorption Ångström exponents at the wavelength ranges 450–700 and 370–950 nm were 1.88 and 0.99, respectively. We found statistically significant trends for the PM10 scattering and absorption coefficients, single-scattering albedo, and backscatter fraction, and the slopes of these trends were −0.32 Mm−1, −0.086 Mm−1, 2.2×10-3, and 1.3×10-3 per year. The tendency for the extensive AOPs to decrease correlated well with the decrease in aerosol number and volume concentrations. The tendency for the backscattering fraction and single-scattering albedo to increase indicates that the aerosol size distribution consists of fewer larger particles and that aerosols absorb less light than at the beginning of the measurements. The trends of the single-scattering albedo and backscattering fraction influenced the aerosol radiative forcing efficiency, indicating that the aerosol particles are scattering the radiation more effectively back into space.


2012 ◽  
Vol 12 (2) ◽  
pp. 4719-4754
Author(s):  
A. Leskinen ◽  
A. Arola ◽  
M. Komppula ◽  
H. Portin ◽  
P. Tiitta ◽  
...  

Abstract. We introduce a four-year (2006–2010) continuous data set of aerosol optical properties at Puijo in Kuopio, Finland. We study the annual and diurnal variation of the aerosol scattering and absorption coefficients, hemispheric backscattering fraction, scattering Ångström exponent, and single scattering albedo, whose averages over this period were 11.1 Mm−1 (at 550 nm), 1.5 Mm−1 (at 670 nm), 0.13, 1.9, and 0.83, respectively. The scattering coefficient peaked in the spring and autumn, being 2–4 times those in the summer and winter. An exception was the summer of 2010, when the the scattering coefficient was elevated to ~300 Mm−1 by the plumes from forest fires in Russia. The absorption coefficient peaked in the winter with values of 2–3 times those in the summer. The single scattering albedo was lowest in the winter when more biomass burning derived, soot-containing aerosols were present. The optical properties varied also with wind direction and time of the day, indicating the effect of the local pollutant sources and the age of the particles. Peak values in the single scattering albedo were observed when the wind blew from a paper mill and from the sector without local pollutant sources. These observations were linked to the sulphate-rich aerosol from the paper mill and the oxygenated organics in the aged aerosol, which both are known to increase the scattering characteristics of aerosols. Changes in the single scattering albedo in the morning and afternoon in the summertime were linked to the increased traffic density at these hours. The scattering and absorption coefficients were found to be decreased by clouds. The effect was stronger for the scattering than absorption, indicating preferential activation of the more hygroscopic aerosol with higher scattering characteristics. What happens to the aerosol optical properties during a cloud event when the air masses come from different directions with different local sources, is under a more detailed inspection. Also, more aerosol mass spectrometry data will be analyzed in order to strengthen our knowledge about the role of the chemical composition of the aerosol particles in their activation into cloud droplets.


2018 ◽  
Vol 18 (16) ◽  
pp. 11599-11622 ◽  
Author(s):  
Lauren Schmeisser ◽  
John Backman ◽  
John A. Ogren ◽  
Elisabeth Andrews ◽  
Eija Asmi ◽  
...  

Abstract. Given the sensitivity of the Arctic climate to short-lived climate forcers, long-term in situ surface measurements of aerosol parameters are useful in gaining insight into the magnitude and variability of these climate forcings. Seasonality of aerosol optical properties – including the aerosol light-scattering coefficient, absorption coefficient, single-scattering albedo, scattering Ångström exponent, and asymmetry parameter – are presented for six monitoring sites throughout the Arctic: Alert, Canada; Barrow, USA; Pallas, Finland; Summit, Greenland; Tiksi, Russia; and Zeppelin Mountain, Ny-Ålesund, Svalbard, Norway. Results show annual variability in all parameters, though the seasonality of each aerosol optical property varies from site to site. There is a large diversity in magnitude and variability of scattering coefficient at all sites, reflecting differences in aerosol source, transport, and removal at different locations throughout the Arctic. Of the Arctic sites, the highest annual mean scattering coefficient is measured at Tiksi (12.47 Mm−1), and the lowest annual mean scattering coefficient is measured at Summit (1.74 Mm−1). At most sites, aerosol absorption peaks in the winter and spring, and has a minimum throughout the Arctic in the summer, indicative of the Arctic haze phenomenon; however, nuanced variations in seasonalities suggest that this phenomenon is not identically observed in all regions of the Arctic. The highest annual mean absorption coefficient is measured at Pallas (0.48 Mm−1), and Summit has the lowest annual mean absorption coefficient (0.12 Mm−1). At the Arctic monitoring stations analyzed here, mean annual single-scattering albedo ranges from 0.909 (at Pallas) to 0.960 (at Barrow), the mean annual scattering Ångström exponent ranges from 1.04 (at Barrow) to 1.80 (at Summit), and the mean asymmetry parameter ranges from 0.57 (at Alert) to 0.75 (at Summit). Systematic variability of aerosol optical properties in the Arctic supports the notion that the sites presented here measure a variety of aerosol populations, which also experience different removal mechanisms. A robust conclusion from the seasonal cycles presented is that the Arctic cannot be treated as one common and uniform environment but rather is a region with ample spatiotemporal variability in aerosols. This notion is important in considering the design or aerosol monitoring networks in the region and is important for informing climate models to better represent short-lived aerosol climate forcers in order to yield more accurate climate predictions for the Arctic.


2015 ◽  
Vol 15 (22) ◽  
pp. 33675-33730
Author(s):  
X. Xu ◽  
W. Zhao ◽  
Q. Zhang ◽  
S. Wang ◽  
B. Fang ◽  
...  

Abstract. The optical properties and chemical composition of PM1.0 (particulate with an aerodynamic diameter of less than 1.0 μm) particles in a suburban environment (Huairou) near the mega-city Beijing were measured during the HOPE-J3A (Haze Observation Project Especially for Jing-Jin-Ji Area) field campaign. The campaign covered the period November 2014 to January 2015 during the winter coal heating season. The average and standard deviations for the extinction, scattering, absorption coefficients, and the aerosol single scattering albedo (SSA) at λ = 470 nm during the measurement period were 201 ± 240, 164 ± 202, 37 ± 43 Mm-1, and 0.80 ± 0.08, respectively. The mean mass scattering (MSE) and absorption (MAE) efficiencies were 4.77 ± 0.01 and 0.87 ± 0.03 m2g-1, respectively. Highly time-resolved air pollution episodes clearly show the dramatic evolution of the PM1.0 size distribution, extensive optical properties (extinction, scattering, and absorption coefficients) and intensive optical properties (single scattering albedo and complex refractive index) during haze formation, development and decline. Time periods were classified into three different pollution levels (clear, slightly polluted, and polluted) for further analysis. It was found that: (1) The diurnal patterns of the aerosol extinction, scattering, absorption coefficients, and SSA differed for the three pollution classes. (2) The real and imaginary part of complex refractive index (CRI) increased, while the SSA decreased from clear to polluted days. (3) The relative contributions of organic and inorganic species to observed aerosol composition changed significantly from clear to polluted days: the organic mass fraction decreased (50 to 43 %) while the proportion of sulfates, nitrates, and ammonium increased strongly (34 to 44 %). (4) The fractional contribution of chemical components to extinction coefficients was calculated by using the modified IMPROVE algorithm. Organic mass was the largest contributor (58 %) to the total extinction of PM1.0. When the air quality deteriorated, the change of the relative contribution of sulfate aerosol to the total extinction was small, but the contribution of nitrate aerosol increased significantly (from 17 % on clear days to 23 % on polluted days). (5) The observed mass scattering efficiencies increased consistently with the pollution extent, however, the observed mass absorption efficiencies increased consistently with increasing mass concentration in slightly pollution conditions, but decreased under polluted conditions.


2019 ◽  
Vol 19 (14) ◽  
pp. 9181-9208 ◽  
Author(s):  
Kristina Pistone ◽  
Jens Redemann ◽  
Sarah Doherty ◽  
Paquita Zuidema ◽  
Sharon Burton ◽  
...  

Abstract. The total effect of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in anthropogenic radiative forcing on the climate. Correct characterization of intensive aerosol optical properties, particularly in conditions where absorbing aerosol is present, is a crucial factor in quantifying these effects. The southeast Atlantic Ocean (SEA), with seasonal biomass burning smoke plumes overlying and mixing with a persistent stratocumulus cloud deck, offers an excellent natural laboratory to make the observations necessary to understand the complexities of aerosol–cloud–radiation interactions. The first field deployment of the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign was conducted in September of 2016 out of Walvis Bay, Namibia. Data collected during ORACLES-2016 are used to derive aerosol properties from an unprecedented number of simultaneous measurement techniques over this region. Here, we present results from six of the eight independent instruments or instrument combinations, all applied to measure or retrieve aerosol absorption and single-scattering albedo. Most but not all of the biomass burning aerosol was located in the free troposphere, in relative humidities typically ranging up to 60 %. We present the single-scattering albedo (SSA), absorbing and total aerosol optical depth (AAOD and AOD), and absorption, scattering, and extinction Ångström exponents (AAE, SAE, and EAE, respectively) for specific case studies looking at near-coincident and near-colocated measurements from multiple instruments, and SSAs for the broader campaign average over the month-long deployment. For the case studies, we find that SSA agrees within the measurement uncertainties between multiple instruments, though, over all cases, there is no strong correlation between values reported by one instrument and another. We also find that agreement between the instruments is more robust at higher aerosol loading (AOD400>0.4). The campaign-wide average and range shows differences in the values measured by each instrument. We find the ORACLES-2016 campaign-average SSA at 500 nm (SSA500) to be between 0.85 and 0.88, depending on the instrument considered (4STAR, AirMSPI, or in situ measurements), with the interquartile ranges for all instruments between 0.83 and 0.89. This is consistent with previous September values reported over the region (between 0.84 and 0.90 for SSA at 550nm). The results suggest that the differences observed in the campaign-average values may be dominated by instrument-specific spatial sampling differences and the natural physical variability in aerosol conditions over the SEA, rather than fundamental methodological differences.


Author(s):  
D. Rupakheti ◽  
S. Kang ◽  
Z. Cong ◽  
M. Rupakheti ◽  
L. Tripathee ◽  
...  

Atmospheric aerosol possesses impacts on climate system and ecological environments, human health and agricultural productivity. The environment over Himalayas and Tibetan Plateau region are continuously degraded due to the transport of pollution from the foothills of the Himalayas; mostly the Indo-Gangetic Plain (IGP). Thus, analysis of aerosol optical properties over two sites; Lumbini and Kathmandu (the southern slope of central Himalayas) using AERONET’s CIMEL sun photometer were conducted in this study. Aerosol optical depth (AOD at 500 nm), angstrom exponent (α or AE), volume size distribution (VSD), single scattering albedo (SSA) and asymmetry parameter (AP) were studied for 2013–2014 and the average AOD was found to be: 0.64 ± 0.41 (Lumbini) and 0.45 ± 0.30 (Kathmandu). The average AE was found to be: 1.25 ± 0.24 and 1.26 ± 0.18 respectively for two sites. The relation between AOD and AE was used to discriminate the aerosol types over these sites which indicated anthropogenic, mixed and biomass burning origin aerosol constituted the major aerosol types in Lumbini and Kathmandu. A clear bi-modal distribution of aerosol volume size was observed with highest volume concentration during the post-monsoon season in fine mode and pre-monsoon season in coarse mode (Lumbini) and highest value over both modes during pre-monsoon season in Kathmandu. The single scattering albedo (SSA) and asymmetry parameter (AP) analyses suggested aerosols over the Himalayan foothills sites are dominated by absorbing and anthropogenic aerosols from urban and industrial activities and biomass burning. Long-term studies are essential to understand and characterize the nature of aerosol over this research gap zone.


2019 ◽  
Author(s):  
Zhe Jiang ◽  
Minzheng Duan ◽  
Huizheng Che ◽  
Wenxing Zhang ◽  
Teruyuki Nakajima ◽  
...  

Abstract. This study analyzed the aerosol optical properties derived by SKYRAD.pack versions 5.0 and 4.2 using the radiometer measurements over Qionghai and Yucheng in China, two new sites of the sky radiometer network (SKYNET). The volume size distribution retrieved by V5.0 presented bimodal patterns with a 0.1–0.2 μm fine particle mode and a 5–6 μm coarse particle mode both over Qionghai and Yucheng. The differences of the volume size distributions between the two versions were very large for the coarse mode with a radius of over 5 μm. The mean values of single scattering albedo (SSA) at 500 nm retrieved from V5.0 were approximately 0.02 lower, but 0.03 higher than those from V4.2 in Qionghai and Yucheng, respectively. The average imaginary part of the complex refractive index (mi) retrieved from V5.0 at all wavelengths was systemically higher than those by V4.2 over Qionghai. Moreover, the differences between the real parts of the complex refractive index (mr) obtained using the two versions were within 4.25 % both at Yucheng and Qionghai. The seasonal variability of the aerosol properties over Qionghai and Yucheng were investigated based on SKYRAD.pack V5.0. The seasonal average SSA during the winter was larger than those in other seasons in Yucheng, while the lowest SSA values occurred in winter over Qionghai. Meanwhile, the mr showed a minimum in winter over both sites. The results can provide validation data in China for SKYNET to continue improving the data-processing and inversion method. The results provide valuable references for continued improvement of the retrieval algorithms of SKYNET and other aerosol observational networks.


Sign in / Sign up

Export Citation Format

Share Document